Gill Diamond
Rutgers University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gill Diamond.
Trends in Microbiology | 2000
Robert E. W. Hancock; Gill Diamond
Cationic antimicrobial peptides are found in all living species. A single animal can contain >24 different antimicrobial peptides, which fall into four structural classes. These peptides are produced in large quantities at sites of infection and/or inflammation and can have broad-spectrum antibacterial, antifungal, antiviral, antiprotozoan and antisepsis properties. In addition, they interact directly with host cells to modulate the inflammatory process and innate defences.
Immunological Reviews | 2000
Gill Diamond; Diana Legarda; Lisa K. Ryan
Acknowledgments:
Current Pharmaceutical Design | 2009
Gill Diamond; Nicholas Beckloff; Aaron Weinberg; Kevin O. Kisich
Antimicrobial peptides (AMPs) are multi-functional peptides whose fundamental biological role in vivo has been proposed to be the elimination of pathogenic microorganisms, including Gram-positive and -negative bacteria, fungi, and viruses. Genes encoding these peptides are expressed in a variety of cells in the host, including circulating phagocytic cells and mucosal epithelial cells, demonstrating a wide range of utility in the innate immune system. Expression of these genes is tightly regulated; they are induced by pathogens and cytokines as part of the host defense response, and they can be suppressed by bacterial virulence factors and environmental factors which can lead to increased susceptibility to infection. New research has also cast light on alternative functionalities, including immunomodulatory activities, which are related to their unique structural characteristics. These peptides represent not only an important component of innate host defense against microbial colonization and a link between innate and adaptive immunity, but also form a foundation for the development of new therapeutic agents.
Infection and Immunity | 2000
Gill Diamond; Vicki L. Kaiser; Janice Rhodes; John P. Russell; Charles L. Bevins
ABSTRACT Innate immunity provides an ever-present or rapidly inducible initial defense against microbial infection. Among the effector molecules of this defense in many species are broad-spectrum antimicrobial peptides. Tracheal antimicrobial peptide (TAP) was the first discovered member of the β-defensin family of mammalian antimicrobial peptides. TAP is expressed in the ciliated epithelium of the bovine trachea, and its mRNA levels are dramatically increased upon stimulation with bacteria or bacterial lipopolysaccharide (LPS). We report here that this induction by LPS is regulated at the level of transcription. Furthermore, the transfection of reporter gene constructs into tracheal epithelial cells indicates that DNA sequences in the 5′ flanking region of the TAP gene, within 324 nucleotides of the transcription start site, are responsible in part for mediating gene induction. This region includes consensus binding sites for NF-κB and nuclear factor interleukin-6 (NF IL-6) transcription factors. Gel mobility shift assays indicate that LPS induces NF-κB binding activity in the nuclei of these cells, while NF IL-6 binding activity is constitutively present. The gene encoding human β-defensin 2, a human homologue of TAP with similar inducible expression patterns in the airway, was cloned and found to have conserved NF-κB and NF IL-6 consensus binding sites in its 5′ flanking region. Previous studies of antimicrobial peptides from insects indicated that their induction by infectious microbes and microbial products also occurs via activation of NF-κB-like and NF IL-6-like transcription factors. Together, these observations indicate that a strategy for the induction of peptide-based antimicrobial innate immunity is conserved among evolutionarily diverse organisms.
Journal of Leukocyte Biology | 2000
Vicki L. Kaiser; Gill Diamond
Antimicrobial peptides are a prevalent mechanism of host defense found throughout nature. In mammals, defensins are among the most abundant of these broad‐spectrum antibiotics, and are expressed in epithelial and hematopoietic cells. The defensin peptides are especially abundant in neutrophils; however, gene expression is limited to the promyelocyte stage. In epithelial cells, defensin genes are found as both constitutively expressed and inducible. Induction has been observedin vitro by stimulation with bacterial lipopolysaccharide as well as inflammatory mediators. In vivo, up‐regulation of several defensin genes occurs in both infectious and inflammatory states. Gene regulation occurs via signal transduction pathways common to other innate immune responses, utilizing transcription factors such as nuclear factor (NF)‐κB and NF interleukin‐6. Together, the data suggest a broad‐based innate host defense whereby potent antimicrobial peptides are present to prevent initial colonization by pathogenic microorganisms. In addition, the recognition of bacteria coupled with a nascent inflammatory response can bolster this defense by a coordinated up‐regulation of the peptides.
Antimicrobial Agents and Chemotherapy | 2000
Alexander M. Cole; Rabih O. Darouiche; Diana Legarda; Nancy D. Connell; Gill Diamond
ABSTRACT Antimicrobial peptides are proposed to act as the first line of mucosal host defense by exerting broad-spectrum microbicidal activity against pathogenic microbes. Pleurocidin, a new 25-residue linear antimicrobial peptide, was recently isolated from the skin secretions of winter flounder (Pleuronectes americanus). The present study identifies the cDNA and gene encoding pleurocidin. The pleurocidin gene comprises four exons. Its upstream region demonstrates consensus binding sequences for transcription factors found in host defense genes in mammals, including sequences identical to the NF-IL6 and alpha and gamma interferon response elements. Pleurocidin is predicted to exist as a 68-residue prepropeptide that undergoes proteolytic cleavage of its amino-terminal signal and carboxy-terminal anionic propiece to form the active, mature peptide. Transmission electron microscopy localized pleurocidin to the mucin granules of skin and intestinal goblet cells. Significant synergy was shown to occur between pleurocidin and d-cycloserine targetingMycobacterium smegmatis. Pleurocidin was functionally active at physiologic concentrations of magnesium and calcium; however, high concentrations of these divalent cations ablated pleurocidins activity against a standard test strain, Escherichia coliD31. Pleurocidin was tested against bacterial and fungal clinical isolates and showed broad-spectrum antimicrobial activity. Together, these data support the hypothesis that pleurocidin participates in innate mucosal immunity, and it may prove to be a beneficial therapeutic agent.
Infection and Immunity | 2005
Bruno Rivas-Santiago; Stephan Schwander; Carmen Sarabia; Gill Diamond; Marcia E. Klein-Patel; Rogelio Hernández-Pando; Jerrold J. Ellner; Eduardo Sada
ABSTRACT To determine the role of human β-defensin 2 (HBD-2) in human tuberculosis, we studied the in vitro induction of HBD-2 gene expression by Mycobacterium tuberculosis H37Rv infection in the human lung epithelial cell line A549, in alveolar macrophages (AM), and in blood monocytes (MN) by reverse transcription-PCR. We also studied the induction of HBD-2 gene expression by mannose lipoarabinomannan (manLAM) from M. tuberculosis. Intracellular production of HBD-2 peptide was detected by immunocytochemistry and electron microscopy. Our results demonstrated that there was induction of HBD-2 mRNA in A549 cells after infection with M. tuberculosis at various multiplicities of infection (MOI) and that there was stimulation with manLAM. AM expressed the HBD-2 gene only at a high MOI with M. tuberculosis. MN did not express HBD-2 at any of the experimental M. tuberculosis MOI. Immunostaining revealed the presence of intracellular HBD-2 peptide in A549 cells following infection with M. tuberculosis, and the staining was more intense in areas where there were M. tuberculosis clusters. By using electron microscopy we also demonstrated production of HBD-2 after M. tuberculosis infection and adherence of HBD-2 to the membranes of M. tuberculosis. Alveolar epithelial cells are among the first cells to encounter M. tuberculosis following aerogenic infection. As HBD-2 has been shown to control growth of M. tuberculosis and has chemotactic activity, our results suggest that HBD-2 induction by M. tuberculosis may have a role in the pathogenesis of human tuberculosis.
Infection and Immunity | 2002
Kevin O. Kisich; Michael Higgins; Gill Diamond; Leonid Heifets
ABSTRACT The ability of human neutrophils to aid in defense against pulmonary infection with Mycobacterium tuberculosis is controversial. In this study, we have shown that neutrophils respond to and phagocytose M. tuberculosis in human lesions. Neutrophils from healthy individuals were able to kill significant fractions of an inoculum of M. tuberculosis within 1 h of phagocytosis, and this ability was enhanced by tumor necrosis factor alpha but not by gamma interferon. The mycobactericidal mechanism was nonoxidative, as inhibitors of reactive oxygen or reactive nitrogen intermediates did not interfere with killing. However, the mycobactericidal mechanism was associated with increased exposure of intracellular M. tuberculosis to neutrophil defensins. In vitro, human neutrophil peptides 1 to 3 were not able to kill the bacilli even at much higher levels. These studies support the concept that human neutrophils are directly involved in defense against infection with M. tuberculosis.
Journal of Dental Research | 2008
Gill Diamond; N. Beckloff; Lisa K. Ryan
Peptides with broad-spectrum antimicrobial activity are found in the mucosal surfaces at many sites in the body, including the airway, the oral cavity, and the digestive tract. Based on their in vitro antimicrobial and other immunomodulatory activities, these host defense peptides have been proposed to play an important role in the innate defense against pathogenic microbial colonization. The genes that encode these peptides are up-regulated by pathogens, further supporting their role in innate immune defense. However, the differences in the local microbial environments between the generally sterile airway and the highly colonized oral cavity suggest a more complex role for these peptides in innate immunity. For example, β-defensin genes are induced in the airway by all bacteria and Toll-like receptor (TLR) agonists primarily through an NF-κB-mediated pathway. In contrast, the same genes are induced in the gingival epithelium by only a subset of bacteria and TLR ligands, via different pathways. Furthermore, the environments into which the peptides are secreted—specifically saliva, gingival crevicular fluid, and airway surface fluid—differ greatly and can effect their respective activities in host defense. In this review, we examine the differences and similarities between host defense peptides in the oral cavity and the airway, to gain a better understanding of their contributions to immunity.
Antimicrobial Agents and Chemotherapy | 2007
Nicholas Beckloff; Danielle Laube; Tammy Castro; David Furgang; Steven Park; David S. Perlin; Dylan J. Clements; Haizhong Tang; Richard W. Scott; Gregory N. Tew; Gill Diamond
ABSTRACT Antimicrobial peptides (AMPs) are naturally occurring, broad-spectrum antimicrobial agents that have recently been examined for their utility as therapeutic antibiotics. Unfortunately, they are expensive to produce and are often sensitive to protease digestion. To address this problem, we have examined the activity of a peptide mimetic whose design was based on the structure of magainin, exhibiting its amphiphilic structure. We demonstrate that this compound, meta-phenylene ethynylene (mPE), exhibits antimicrobial activity at nanomolar concentrations against a variety of bacterial and Candida species found in oral infections. Since Streptococcus mutans, an etiological agent of dental caries, colonizes the tooth surface and forms a biofilm, we quantified the activity of this compound against S. mutans growing under conditions that favor biofilm formation. Our results indicate that mPE can prevent the formation of a biofilm at nanomolar concentrations. Incubation with 5 nM mPE prevents further growth of the biofilm, and 100 nM mPE reduces viable bacteria in the biofilm by 3 logs. Structure-function analyses suggest that mPE inhibits the bioactivity of lipopolysaccharide and binds DNA at equimolar ratios, suggesting that it may act both as a membrane-active molecule, similar to magainin, and as an intracellular antibiotic, similar to other AMPs. We conclude that mPE and similar molecules display great potential for development as therapeutic antimicrobials.