Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilles Brackman is active.

Publication


Featured researches published by Gilles Brackman.


Antimicrobial Agents and Chemotherapy | 2011

Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo

Gilles Brackman; Paul Cos; Louis Maes; Hans Nelis; Tom Coenye

ABSTRACT Although the exact role of quorum sensing (QS) in various stages of biofilm formation, maturation, and dispersal and in biofilm resistance is not entirely clear, the use of QS inhibitors (QSI) has been proposed as a potential antibiofilm strategy. We have investigated whether QSI enhance the susceptibility of bacterial biofilms to treatment with conventional antimicrobial agents. The QSI used in our study target the acyl-homoserine lactone-based QS system present in Pseudomonas aeruginosa and Burkholderia cepacia complex organisms (baicalin hydrate, cinnamaldehyde) or the peptide-based system present in Staphylococcus aureus (hamamelitannin). The effect of tobramycin (P. aeruginosa, B. cepacia complex) and clindamycin or vancomycin (S. aureus), alone or in combination with QSI, was evaluated in various in vitro and in vivo biofilm model systems, including two invertebrate models and one mouse pulmonary infection model. In vitro the combined use of an antibiotic and a QSI generally resulted in increased killing compared to killing by an antibiotic alone, although reductions were strain and model dependent. A significantly higher fraction of infected Galleria mellonella larvae and Caenorhabditis elegans survived infection following combined treatment, compared to treatment with an antibiotic alone. Finally, the combined use of tobramycin and baicalin hydrate reduced the microbial load in the lungs of BALB/c mice infected with Burkholderia cenocepacia more than tobramycin treatment alone. Our data suggest that QSI may increase the success of antibiotic treatment by increasing the susceptibility of bacterial biofilms and/or by increasing host survival following infection.


BMC Microbiology | 2008

Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR

Gilles Brackman; Tom Defoirdt; Carol M. Miyamoto; Peter Bossier; Serge Van Calenbergh; Hans Nelis; Tom Coenye

BackgroundTo date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp.ResultsOur results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment, (iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120.ConclusionCinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs.


Journal of Antimicrobial Chemotherapy | 2012

Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model

Gilles Brackman; Tom Coenye

OBJECTIVES Quorum sensing (QS)-deficient Pseudomonas aeruginosa biofilms formed in vitro are more susceptible to tobramycin than QS-proficient P. aeruginosa biofilms, and combination treatment with a QS inhibitor (QSI) and tobramycin shows synergistic effects on the killing of in vitro biofilms. We extended these results to an in vivo P. aeruginosa foreign-body biofilm model. The effect of treatment initiated prophylactically was compared with treatment initiated 11 days post-insertion. METHODS Silicone tube implants pre-colonized with wild-type P. aeruginosa were inserted into the peritoneal cavity of BALB/c mice. Mice were treated with intraperitoneal or subcutaneous injections of the QSIs furanone C-30, ajoene or horseradish juice extract in combination with tobramycin. Mice were euthanized on day 1, 2, 3 or 14 post-infection for the estimation of quantitative bacteriology, histopathology and cytokine measurements. RESULTS Combination treatment of P. aeruginosa resulted in a significantly lower cfu per implant as compared with the placebo groups for all QSIs tested. For early-initiated treatment, a significant difference in clearing was also observed between the combination group and the single-treatment groups, and between the placebo group and the single-treatment groups. In one case a significant difference in clearing was found between the two single-treatment groups. CONCLUSIONS Synergistic antimicrobial efficacy could be achieved when treating mice with both a QSI and tobramycin, resulting in an increased clearance of P. aeruginosa in a foreign-body infection model. Our study highlights the important prospects in developing an early combinatory treatment strategy for chronic infections.


Current Pharmaceutical Design | 2014

Quorum Sensing Inhibitors as Anti-Biofilm Agents

Gilles Brackman; Tom Coenye

Biofilms are microbial sessile communities characterized by cells that are attached to a substratum or interface or to each other, are embedded in a self-produced matrix of extracellular polymeric substances and exhibit an altered phenotype compared to planktonic cells. Biofilms are estimated to be associated with 80% of microbial infections and it is currently common knowledge that growth of micro-organisms in biofilms can enhance their resistance to antimicrobial agents. As a consequence antimicrobial therapy often fails to eradicate biofilms from the site of infection. For this reason, innovative anti-biofilm agents with novel targets and modes of action are needed. One alternative approach is targeting the bacterial communication system (quorum sensing, QS). QS is a process by which bacteria produce and detect signal molecules and thereby coordinate their behavior in a cell-density dependent manner. Three main QS systems can be distinguished: the acylhomoserine lactone (AHL) QS system in Gram-negative bacteria, the autoinducing peptide (AIP) QS system in Gram-positive bacteria and the autoinducer-2 (AI-2) QS system in both Gram-negative and -positive bacteria. Although much remains to be learned about the involvement of QS in biofilm formation, maintenance, and dispersal, QS inhibitors (QSI) have been proposed as promising antibiofilm agents. In this article we will give an overview of QS inhibitors which have been shown to play a role in biofilm formation and/or maturation.


Chemistry & Biology | 2015

D-Enantiomeric Peptides that Eradicate Wild-Type and Multidrug-Resistant Biofilms and Protect against Lethal Pseudomonas aeruginosa Infections

César de la Fuente-Núñez; Fany Reffuveille; Sarah C. Mansour; Shauna L. Reckseidler-Zenteno; Diego Hernández; Gilles Brackman; Tom Coenye; Robert E. W. Hancock

In many infections, bacteria form surface-associated communities known as biofilms that are substantially more resistant to antibiotics than their planktonic counterparts. Based on the design features of active antibiofilm peptides, we made a series of related 12-amino acid L-, D- and retro-inverso derivatives. Specific D-enantiomeric peptides were the most potent at inhibiting biofilm development and eradicating preformed biofilms of seven species of wild-type and multiply antibiotic-resistant Gram-negative pathogens. Moreover, these peptides showed strong synergy with conventional antibiotics, reducing the antibiotic concentrations required for complete biofilm inhibition by up to 64-fold. As shown previously for 1018, these D-amino acid peptides targeted the intracellular stringent response signal (p)ppGpp. The most potent peptides DJK-5 and DJK-6 protected invertebrates from lethal Pseudomonas aeruginosa infections and were considerably more active than a previously described L-amino acid peptide 1018. Thus, the protease-resistant peptides produced here were more effective both in vitro and in vivo.


Research in Microbiology | 2009

Use of quorum sensing inhibitors to interfere with biofilm formation and development in Burkholderia multivorans and Burkholderia cenocepacia

Gilles Brackman; Ulrik Hillaert; Serge Van Calenbergh; Hans Nelis; Tom Coenye

Burkholderia cepacia complex strains are opportunistic pathogens causing life-threatening infections in cystic fibrosis patients. B. cepacia complex strains are resistant to many antimicrobial agents and commonly produce biofilms in vitro and in vivo. This contributes to their virulence and makes Burkholderia infections difficult to treat. Recently, the quorum sensing (QS) system of Burkholderia spp. has been found to affect their biofilm-forming ability, making it an attractive target for antimicrobial therapy. However, detailed information about the anti-biofilm effect of these compounds is still lacking. In the present study, we evaluated the anti-biofilm effect of several known QS inhibitors. The effect on Burkholderia spp. biofilm formation was examined using crystal violet, resazurin and SYTO9 staining, confocal laser scanning microscopy as well as plating. When used at subinhibitory concentrations, several compounds interfered with biofilm formation by Burkholderia spp. Our results suggest that the QS inhibitors affect later stages of biofilm formation and detachment.


Trends in Microbiology | 2013

Quorum sensing inhibitors: how strong is the evidence?

Tom Defoirdt; Gilles Brackman; Tom Coenye

Because of its promising effect as an alternative to antibiotics, quorum sensing disruption is an intensively studied field, and there are many studies that describe the quorum sensing inhibitory activity of natural and synthetic compounds. In this opinion article, we present an overview of recent literature with respect to quorum sensing inhibitors. Most of this research is based on experiments with quorum sensing signal molecule reporter strains. However, these experiments are prone to bias due to other effects compounds may have on reporter strains. We argue that researchers should perform adequate control experiments and should carefully assess toxicity of the compounds in the bacterial species they are working with in order to confirm that what they observe really is quorum sensing inhibition.


PLOS ONE | 2011

Structure-Activity Relationship of Cinnamaldehyde Analogs as Inhibitors of AI-2 Based Quorum Sensing and Their Effect on Virulence of Vibrio spp

Gilles Brackman; Shari Celen; Ulrik Hillaert; Serge Van Calenbergh; Paul Cos; Louis Maes; Hans Nelis; Tom Coenye

Background Many bacteria, including Vibrio spp., regulate virulence gene expression in a cell-density dependent way through a communication process termed quorum sensing (QS). Hence, interfering with QS could be a valuable novel antipathogenic strategy. Cinnamaldehyde has previously been shown to inhibit QS-regulated virulence by decreasing the DNA-binding ability of the QS response regulator LuxR. However, little is known about the structure-activity relationship of cinnamaldehyde analogs. Methodology/Principal Findings By evaluating the QS inhibitory activity of a series of cinnamaldehyde analogs, structural elements critical for autoinducer-2 QS inhibition were identified. These include an α,β unsaturated acyl group capable of reacting as Michael acceptor connected to a hydrophobic moiety and a partially negative charge. The most active cinnamaldehyde analogs were found to affect the starvation response, biofilm formation, pigment production and protease production in Vibrio spp in vitro, while exhibiting low cytotoxicity. In addition, these compounds significantly increased the survival of the nematode Caenorhabditis elegans infected with Vibrio anguillarum, Vibrio harveyi and Vibrio vulnificus. Conclusions/Significance Several new and more active cinnamaldehyde analogs were discovered and they were shown to affect Vibrio spp. virulence factor production in vitro and in vivo. Although ligands for LuxR have not been identified so far, the nature of different cinnamaldehyde analogs and their effect on the DNA binding ability of LuxR suggest that these compounds act as LuxR-ligands.


Phytomedicine | 2012

Eradication of Propionibacterium acnes biofilms by plant extracts and putative identification of icariin, resveratrol and salidroside as active compounds.

Tom Coenye; Gilles Brackman; Petra Rigole; Evy De Witte; Kris Honraet; Bart Rossel; Hans Nelis

Propionibacterium acnes is a Gram-positive bacterium that plays an important role in the pathogenesis of acne vulgaris. This organism is capable of biofilm formation and the decreased antimicrobial susceptibility of biofilm-associated cells may hamper efficient treatment. In addition, the prolonged use of systemic antibiotic therapy is likely to lead to the development and spread of antimicrobial resistance. In the present study we investigated whether P. acnes biofilms could be eradicated by plant extracts or their active compounds, and whether other mechanisms besides killing of biofilm cells could be involved. Out of 119 plant extracts investigated, we identified five with potent antibiofilm activity against P. acnes (extracts from Epimedium brevicornum, Malus pumila, Polygonum cuspidatum, Rhodiola crenulata and Dolichos lablab). We subsequently identified icariin, resveratrol and salidroside as active compounds in three of these extracts. Extracts from E. brevicornum and P. cuspidatum, as well as their active compounds (icariin and resveratrol, respectively) showed marked antibiofilm activity when used in subinhibitory concentrations, indicating that killing of microbial cells is not their only mode of action.


Journal of Microbiological Methods | 2011

Isolation and identification of quorum quenching bacteria from environmental samples.

Steven E.A. Christiaen; Gilles Brackman; Hans Nelis; Tom Coenye

A large number of Gram-negative pathogens produce N-acylhomoserine lactones (AHLs) as signal molecules for quorum sensing (QS). This cell-cell communication system allows them to coordinate gene expression and regulate virulence. Therefore, strategies to inhibit QS are promising for the control of infectious diseases. The aim of the present study was to develop a high-throughput method for the isolation and identification of AHL-degrading bacteria from environmental samples. Samples were cultured in a microtitre plate in a minimal medium containing 1 mM N-(3-oxo-dodecanoyl)-L-homoserine lactone and 2 mM N-(3-oxo-hexanoyl)-L-homoserine lactone as the sole sources of carbon and nitrogen. Isolates growing on this minimal medium were subcultured and identified by partial 16S rRNA gene sequencing. Subsequently, the AHL-degrading capacity of each isolate was evaluated in the Pseudomonas aeruginosa QSIS2 biosensor assay, as such or after treatment with heat or proteinase K. The 16 samples tested yielded a total of 59 isolates which are, either alone or as part of a consortium, able to use AHL signal molecules as sole sources of carbon and nitrogen. Follow-up experiments have shown that in each sample there is at least one isolate with quorum quenching (QQ) activity, and that for all samples combined, 41 isolates have QQ activity. Furthermore, heat treatment did not fully inhibit QQ activity in all isolates. In some isolates, QQ activity was lost after proteinase K treatment, while others remained able to quench QS. Therefore, it is likely that some isolates produce and secrete (a) heat-stable, low molecular weight inhibitory compound(s).

Collaboration


Dive into the Gilles Brackman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Cos

University of Antwerp

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge