Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilles Carmel is active.

Publication


Featured researches published by Gilles Carmel.


Nature | 1999

Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori

Richard A. Alm; Lo-See L. Ling; Donald T. Moir; Benjamin L. King; Eric D. Brown; Peter Doig; Douglas R. Smith; Brian Noonan; Braydon C. Guild; Boudewijn L. deJonge; Gilles Carmel; Peter J. Tummino; Anthony Caruso; Maria Uria-Nickelsen; Debra M. Mills; Cameron Ives; Rene Gibson; David Merberg; Scott D. Mills; Qin Jiang; Diane E. Taylor; Gerald F. Vovis; Trevor J. Trust

Helicobacter pylori, one of the most common bacterial pathogens of humans, colonizes the gastric mucosa, where it appears to persist throughout the hosts life unless the patient is treated. Colonization induces chronic gastric inflammation which can progress to a variety of diseases, ranging in severity from superficial gastritis and peptic ulcer to gastric cancer and mucosal-associated lymphoma. Strain-specific genetic diversity has been proposed to be involved in the organisms ability to cause different diseases or even be beneficial to the infected host, and to participate in the lifelong chronicity of infection. Here we compare the complete genomic sequences of two unrelated H. pylori isolates. This is, to our knowledge, the first such genomic comparison. H. pylori was believed to exhibit a large degree of genomic and allelic diversity, but we find that the overall genomic organization, gene order and predicted proteomes (sets of proteins encoded by the genomes) of the two strains are quite similar. Between 6 to 7% of the genes are specific to each strain, with almost half of these genes being clustered in a single hypervariable region.


Leukemia | 2012

Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide

Antonia Lopez-Girona; Derek Mendy; Takumi Ito; Karen Miller; Anita Gandhi; Jian Kang; Satoki Karasawa; Gilles Carmel; Pilgrim Jackson; Mahan Abbasian; Afshin Mahmoudi; Brian E. Cathers; Emily Rychak; Svetlana Gaidarova; R Chen; Peter H. Schafer; Hiroshi Handa; Tom Daniel; Jilly F. Evans; Rajesh Chopra

Thalidomide and the immunomodulatory drug, lenalidomide, are therapeutically active in hematological malignancies. The ubiquitously expressed E3 ligase protein cereblon (CRBN) has been identified as the primary teratogenic target of thalidomide. Our studies demonstrate that thalidomide, lenalidomide and another immunomodulatory drug, pomalidomide, bound endogenous CRBN and recombinant CRBN–DNA damage binding protein-1 (DDB1) complexes. CRBN mediated antiproliferative activities of lenalidomide and pomalidomide in myeloma cells, as well as lenalidomide- and pomalidomide-induced cytokine production in T cells. Lenalidomide and pomalidomide inhibited autoubiquitination of CRBN in HEK293T cells expressing thalidomide-binding competent wild-type CRBN, but not thalidomide-binding defective CRBNYW/AA. Overexpression of CRBN wild-type protein, but not CRBNYW/AA mutant protein, in KMS12 myeloma cells, amplified pomalidomide-mediated reductions in c-myc and IRF4 expression and increases in p21WAF-1 expression. Long-term selection for lenalidomide resistance in H929 myeloma cell lines was accompanied by a reduction in CRBN, while in DF15R myeloma cells resistant to both pomalidomide and lenalidomide, CRBN protein was undetectable. Our biophysical, biochemical and gene silencing studies show that CRBN is a proximate, therapeutically important molecular target of lenalidomide and pomalidomide.


Nature Structural & Molecular Biology | 2014

Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs

Philip Chamberlain; Antonia Lopez-Girona; Karen Miller; Gilles Carmel; Barbra Pagarigan; Barbara Chie-Leon; Emily Rychak; Laura G. Corral; Yan J Ren; Maria Wang; Mariko Riley; Silvia L Delker; Takumi Ito; Hideki Ando; Tomoyuki Mori; Yoshinori Hirano; Hiroshi Handa; Toshio Hakoshima; Thomas O. Daniel; Brian E. Cathers

The Cul4–Rbx1–DDB1–Cereblon E3 ubiquitin ligase complex is the target of thalidomide, lenalidomide and pomalidomide, therapeutically important drugs for multiple myeloma and other B-cell malignancies. These drugs directly bind Cereblon (CRBN) and promote the recruitment of substrates Ikaros (IKZF1) and Aiolos (IKZF3) to the E3 complex, thus leading to substrate ubiquitination and degradation. Here we present the crystal structure of human CRBN bound to DDB1 and the drug lenalidomide. A hydrophobic pocket in the thalidomide-binding domain (TBD) of CRBN accommodates the glutarimide moiety of lenalidomide, whereas the isoindolinone ring is exposed to solvent. We also solved the structures of the mouse TBD in the apo state and with thalidomide or pomalidomide. Site-directed mutagenesis in lentiviral-expression myeloma models showed that key drug-binding residues are critical for antiproliferative effects.


British Journal of Haematology | 2014

Measuring cereblon as a biomarker of response or resistance to lenalidomide and pomalidomide requires use of standardized reagents and understanding of gene complexity.

Anita Gandhi; Derek Mendy; Michelle Waldman; Gengxin Chen; Emily Rychak; Karen Miller; Svetlana Gaidarova; Yan Ren; Maria Wang; Michael Breider; Gilles Carmel; Afshin Mahmoudi; Pilgrim Jackson; Mahan Abbasian; Brian E. Cathers; Peter H. Schafer; Tom Daniel; Antonia Lopez-Girona; Anjan Thakurta; Rajesh Chopra

Cereblon, a member of the cullin 4 ring ligase complex (CRL4), is the molecular target of the immunomodulatory drugs (IMiDs) lenalidomide and pomalidomide and is required for the antiproliferative activity of these agents in multiple myeloma (MM) and immunomodulatory activity in T cells. Cereblons central role as a target of lenalidomide and pomalidomide suggests potential utility as a predictive biomarker of response or resistance to IMiD therapy. Our studies characterized a cereblon monoclonal antibody CRBN65, with high sensitivity and specificity in Western analysis and immunohistochemistry that is superior to commercially available antibodies. We identified multiple cereblon splice variants in both MM cell lines and primary cells, highlighting challenges with conventional gene expression assays given this gene complexity. Using CRBN65 antibody and TaqMan quantitative reverse transcription polymerase chain reaction assays, we showed lack of correlation between cereblon protein and mRNA levels. Furthermore, lack of correlation between cereblon expression in MM cell lines and sensitivity to lenalidomide was shown. In cell lines made resistant to lenalidomide and pomalidomide, cereblon protein is greatly reduced. These studies show limitations to the current approaches of cereblon measurement that rely on commercial reagents and assays. Standardized reagents and validated assays are needed to accurately assess the role of cereblon as a predictive biomarker.


Nature | 2016

A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase.

Mary Matyskiela; Gang Lu; Takumi Ito; Barbra Pagarigan; Chin-Chun Lu; Karen Miller; Wei Fang; Nai-Yu Wang; Derek Nguyen; J. E. Houston; Gilles Carmel; Tam Tran; Mariko Riley; Lyn’Al Nosaka; Gabriel C. Lander; Svetlana Gaidarova; Shuichan Xu; Alexander L. Ruchelman; Hiroshi Handa; James Carmichael; Thomas O. Daniel; Brian E. Cathers; Antonia Lopez-Girona; Philip Chamberlain

Immunomodulatory drugs bind to cereblon (CRBN) to confer differentiated substrate specificity on the CRL4CRBN E3 ubiquitin ligase. Here we report the identification of a new cereblon modulator, CC-885, with potent anti-tumour activity. The anti-tumour activity of CC-885 is mediated through the cereblon-dependent ubiquitination and degradation of the translation termination factor GSPT1. Patient-derived acute myeloid leukaemia tumour cells exhibit high sensitivity to CC-885, indicating the clinical potential of this mechanism. Crystallographic studies of the CRBN–DDB1–CC-885–GSPT1 complex reveal that GSPT1 binds to cereblon through a surface turn containing a glycine residue at a key position, interacting with both CC-885 and a ‘hotspot’ on the cereblon surface. Although GSPT1 possesses no obvious structural, sequence or functional homology to previously known cereblon substrates, mutational analysis and modelling indicate that the cereblon substrate Ikaros uses a similar structural feature to bind cereblon, suggesting a common motif for substrate recruitment. These findings define a structural degron underlying cereblon ‘neosubstrate’ selectivity, and identify an anti-tumour target rendered druggable by cereblon modulation.


Antimicrobial Agents and Chemotherapy | 2004

Identification and Characterization of Inhibitors of Bacterial Enoyl-Acyl Carrier Protein Reductase

Lo-See L. Ling; Jun Xian; Syed M. Ali; Bolin Geng; Jun Fan; Debra M. Mills; Anthony C. Arvanites; Hernan Orgueira; Mark A. Ashwell; Gilles Carmel; Yibin Xiang; Donald T. Moir

ABSTRACT Bacterial enoyl-acyl carrier protein reductase (ENR) catalyzes an essential step in fatty acid biosynthesis. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes. High-throughput screening to identify inhibitors of Escherichia coli ENR yielded four structurally distinct classes of hits. Several members of one of these, the 2-(alkylthio)-4,6-diphenylpyridine-3-carbonitriles (“thiopyridines”), inhibited both purified ENR (50% inhibitory concentration [IC50] = 3 to 25 μM) and the growth of Staphylococcus aureus and Bacillus subtilis (MIC = 1 to 64 μg/ml). The effect on cell growth is due in part to inhibition of fatty acid biosynthesis as judged by inhibition of incorporation of [14C]acetate into fatty acids and by the increased sensitivity of cells that underexpress an ENR-encoding gene (four- to eightfold MIC shift). Synthesis of a variety of compounds in this chemical series revealed a correlation between IC50 and MIC, and the results provided initial structure-activity relationships. Preliminary structure-activity relationships, potency on purified ENR, and activity on bacterial cells indicate that members of the thiopyridine chemical series are effective fatty acid biosynthesis inhibitors suitable for further antibacterial development.


Biochimica et Biophysica Acta | 2002

Helicobacter pylori 3-deoxy-D-manno-octulosonate-8-phosphate (KDO-8-P) synthase is a zinc-metalloenzyme

Daniel J Krosky; Richard A. Alm; Mikael Berg; Gilles Carmel; Peter Tummino; Bo Xu; Wei Yang

3-Deoxy-D-manno-2-octulosonate-8-phosphate (KDO-8-P) synthase catalyzes the aldol-type condensation of phosphoenolpyruvate and D-arabinose-5-phosphate (A-5-P) to produce KDO-8-P and inorganic phosphate. All KDO-8-P synthases, as exemplified by the enzyme from Escherichia coli, were believed not to require a metal cofactor for catalytic activity. However, recent studies have demonstrated that the KDO-8-P synthase from Aquifex aeolicus is a metalloenzyme. Moreover, sequence alignments and phylogenetic analysis of KDO-8-P synthase protein sequences strongly suggested that there is a whole subfamily of KDO-8-P synthases that are also metalloenzymes. One of these putative metalloenzymes is the ortholog from the human pathogen Helicobacter pylori. In order to test this model, we have cloned the kdsa gene encoding H. pylori KDO-8-P synthase, and overexpressed and purified the protein. This enzyme was found to bind one mol Zn/mol monomer, and the removal of this metal by treatment with 2,6-pyridine dicarboxylic acid abolished enzymatic activity. The Zn(2+) in the enzyme could be quantitatively replaced by Cd(2+), which increased the observed k(cat) by approximately 2-fold, and decreased the apparent K(m)(A-5-P) by approximately 6.5-fold. Furthermore, removal of the Zn(2+) from the enzyme did not greatly perturb its circular dichroism spectra. Thus, the divalent metal most likely serves as cofactor directly involved in catalysis.


Journal of Medicinal Chemistry | 2017

A Cereblon Modulator (CC-220) with Improved Degradation of Ikaros and Aiolos

Mary Matyskiela; Weihong Zhang; Hon-Wah Man; George W. Muller; Godrej Khambatta; Frans Baculi; Matt Hickman; Laurie LeBrun; Barbra Pagarigan; Gilles Carmel; Chin-Chun Lu; Gang Lu; Mariko Riley; Yoshitaka Satoh; Peter H. Schafer; Thomas Oran Daniel; James Carmichael; Brian E. Cathers; P. P. Chamberlain

The drugs lenalidomide and pomalidomide bind to the protein cereblon, directing the CRL4-CRBN E3 ligase toward the transcription factors Ikaros and Aiolos to cause their ubiquitination and degradation. Here we describe CC-220 (compound 6), a cereblon modulator in clinical development for systemic lupus erythematosis and relapsed/refractory multiple myeloma. Compound 6 binds cereblon with a higher affinity than lenalidomide or pomalidomide. Consistent with this, the cellular degradation of Ikaros and Aiolos is more potent and the extent of substrate depletion is greater. The crystal structure of cereblon in complex with DDB1 and compound 6 reveals that the increase in potency correlates with increased contacts between compound 6 and cereblon away from the modeled binding site for Ikaros/Aiolos. These results describe a new cereblon modulator which achieves greater substrate degradation via tighter binding to the cereblon E3 ligase and provides an example of the effect of E3 ligase binding affinity with relevance to other drug discovery efforts in targeted protein degradation.


Nature | 1999

Erratum: Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori: Correction

Richard A. Alm; Lo-See L. Ling; Donald T. Moir; Benjamin L. King; Eric D. Brown; Peter Doig; Douglas R. Smith; Brian Noonan; Braydon C. Guild; Boudewijn L. deJonge; Gilles Carmel; Peter J. Tummino; Anthony Caruso; Maria Uria-Nickelsen; Debra M. Mills; Cameron Ives; Rene Gibson; David Merberg; Scott D. Mills; Qin Jiang; Diane E. Taylor; Gerald F. Vovis; Trevor J. Trust

This corrects the article DOI: 10.1038/16495


Journal of Medicinal Chemistry | 2017

Protein Degradation via CRL4CRBN Ubiquitin Ligase: Discovery and Structure–Activity Relationships of Novel Glutarimide Analogs That Promote Degradation of Aiolos and/or GSPT1

Joshua Hansen; Kevin Ronald Condroski; Matthew Correa; George W. Muller; Hon-Wah Man; Alexander L. Ruchelman; Weihong Zhang; Fan Vocanson; Tim Crea; Wei Liu; Gang Lu; Frans Baculi; Laurie LeBrun; Afshin Mahmoudi; Gilles Carmel; Matt Hickman; Chin-Chun Lu

We previously disclosed the identification of cereblon modulator 3 (CC-885), with potent antitumor activity mediated through the degradation of GSPT1. We describe herein the structure-activity relationships for analogs of 3 with exploration of the structurally related dioxoisoindoline class. The observed activity of protein degradation could in part be rationalized through docking into the previously disclosed 3-CRBN-GSPT1 cocrystal ternary complex. For SAR that could not be rationalized through the cocrystal complex, we sought to predict SAR through a QSAR model developed in house. Through these analyses, selective protein degradation could be achieved between the two proteins of interest, GSPT1 and Aiolos.

Collaboration


Dive into the Gilles Carmel's collaboration.

Researchain Logo
Decentralizing Knowledge