Gilles Doumy
Argonne National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gilles Doumy.
Journal of Physics B | 2013
Christoph Bostedt; John D. Bozek; P. H. Bucksbaum; Ryan Coffee; Jerome Hastings; Zhirong Huang; R W Lee; Sebastian Schorb; J N Corlett; P Denes; P Emma; R W Falcone; R W Schoenlein; Gilles Doumy; E. P. Kanter; Bertold Kraessig; S. H. Southworth; L. Young; L. Fang; M. Hoener; N. Berrah; C. Roedig; L. F. DiMauro
X-ray free-electron lasers (FELs) produce femtosecond x-ray pulses with unprecedented intensities that are uniquely suited for studying many phenomena in atomic, molecular, and optical (AMO) physics. A compilation of the current developments at the Linac Coherent Light Source (LCLS) and future plans for the LCLS-II and Next Generation Light Source (NGLS) are outlined. The AMO instrumentation at LCLS and its performance parameters are summarized. A few selected experiments representing the rapidly developing field of ultra-fast and peak intensity x-ray AMO sciences are discussed. These examples include fundamental aspects of intense x-ray interaction with atoms, nonlinear atomic physics in the x-ray regime, double core-hole spectroscopy, quantum control experiments with FELs and ultra-fast x-ray induced dynamics in clusters. These experiments illustrate the fundamental aspects of the interaction of intense short pulses of x-rays with atoms, molecules and clusters that are probed by electron and ion spectroscopies as well as ultra-fast x-ray scattering.
Journal of Physical Chemistry A | 2012
Kristoffer Haldrup; György Vankó; Wojciech Gawelda; Andreas Galler; Gilles Doumy; Anne Marie March; E. P. Kanter; Amélie Bordage; Asmus Ougaard Dohn; T. B. van Driel; Kasper S. Kjaer; Henrik T. Lemke; Sophie E. Canton; Jens Uhlig; Villy Sundström; Linda Young; Stephen H. Southworth; Martin Meedom Nielsen; Christian Bressler
We have studied the photoinduced low spin (LS) to high spin (HS) conversion of [Fe(bipy)(3)](2+) in aqueous solution. In a laser pump/X-ray probe synchrotron setup permitting simultaneous, time-resolved X-ray diffuse scattering (XDS) and X-ray spectroscopic measurements at a 3.26 MHz repetition rate, we observed the interplay between intramolecular dynamics and the intermolecular caging solvent response with better than 100 ps time resolution. On this time scale, the initial ultrafast spin transition and the associated intramolecular geometric structure changes are long completed, as is the solvent heating due to the initial energy dissipation from the excited HS molecule. Combining information from X-ray emission spectroscopy and scattering, the excitation fraction as well as the temperature and density changes of the solvent can be closely followed on the subnanosecond time scale of the HS lifetime, allowing the detection of an ultrafast change in bulk solvent density. An analysis approach directly utilizing the spectroscopic data in the XDS analysis effectively reduces the number of free parameters, and both combined permit extraction of information about the ultrafast structural dynamics of the caging solvent, in particular, a decrease in the number of water molecules in the first solvation shell is inferred, as predicted by recent theoretical work.
Review of Scientific Instruments | 2011
Anne Marie March; Andrew B. Stickrath; Gilles Doumy; E. P. Kanter; B. Krässig; Stephen H. Southworth; Klaus Attenkofer; Charles Kurtz; Lin X. Chen; Linda Young
We describe our implementation of a high repetition rate (54 kHz-6.5 MHz), high power (>10 W), laser system at the 7ID beamline at the Advanced Photon Source for laser pump/x-ray probe studies of optically driven molecular processes. Laser pulses at 1.06 μm wavelength and variable duration (10 or 130 ps) are synchronized to the storage ring rf signal to a precision of ~250 fs rms. Frequency doubling and tripling of the laser radiation using nonlinear optical techniques have been applied to generate 532 and 355 nm light. We demonstrate that by combining a microfocused x-ray probe with focused optical laser radiation the requisite fluence (with <10 μJ/pulse) for efficient optical excitation can be readily achieved with a compact and commercial laser system at megahertz repetition rates. We present results showing the time-evolution of near-edge x-ray spectra of a well-studied, laser-excited metalloporphyrin, Ni(II)-tetramesitylporphyrin. The use of high repetition rate, short pulse lasers as pump sources will dramatically enhance the duty cycle and efficiency in data acquisition and hence capabilities for laser-pump/x-ray probe studies of ultrafast structural dynamics at synchrotron sources.
Journal of Physical Chemistry C | 2015
György Vankó; Amélie Bordage; Mátyás Pápai; Kristoffer Haldrup; Pieter Glatzel; Anne Marie March; Gilles Doumy; Alexander Britz; Andreas Galler; Tadesse Assefa; Delphine Cabaret; Amélie Juhin; Tim Brandt van Driel; Kasper Skov Kjær; Asmus Ougaard Dohn; Klaus B. Møller; Henrik T. Lemke; Erik Gallo; Mauro Rovezzi; Zoltán Németh; Emese Rozsályi; Tamás Rozgonyi; Jens Uhlig; Villy Sundström; Martin Meedom Nielsen; Linda Young; Stephen H. Southworth; Christian Bressler; Wojciech Gawelda
Theoretical predictions show that depending on the populations of the Fe 3dxy, 3dxz, and 3dyz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy)2]2+. The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy)2]2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy)2]2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe–ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)–high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations.
Journal of the American Chemical Society | 2016
Dooshaye Moonshiram; Carolina Gimbert-Suriñach; Alexander A. Guda; Antonio Picón; C. Stefan Lehmann; Xiaoyi Zhang; Gilles Doumy; Anne Marie March; Jordi Benet-Buchholz; A. V. Soldatov; Antoni Llobet; Stephen H. Southworth
X-ray transient absorption spectroscopy (X-TAS) has been used to study the light-induced hydrogen evolution reaction catalyzed by a tetradentate macrocyclic cobalt complex with the formula [LCo(III)Cl2](+) (L = macrocyclic ligand), [Ru(bpy)3](2+) photosensitizer, and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis of a binary mixture of the octahedral Co(III) precatalyst and [Ru(bpy)3](2+) after illumination revealed in situ formation of a Co(II) intermediate with significantly distorted geometry and electron-transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds, followed by its decay in the microsecond time scale. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and finite difference method (FDM). These findings allowed us to assign the full mechanistic pathway, followed by the catalyst as well as to determine the rate-limiting step of the process, which consists in the protonation of the Co(I) species. This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.
Nature Communications | 2016
Antonio Picón; C. S. Lehmann; Christoph Bostedt; Artem Rudenko; Agostino Marinelli; T. Osipov; Daniel Rolles; N. Berrah; C. Bomme; Maximilian Bucher; Gilles Doumy; Benjamin Erk; Ken R. Ferguson; Tais Gorkhover; Phay Ho; E. P. Kanter; B. Krässig; J. Krzywinski; Alberto Lutman; Anne Marie March; Dooshaye Moonshiram; D. Ray; L. Young; Stephen T. Pratt; S. H. Southworth
New capabilities at X-ray free-electron laser facilities allow the generation of two-colour femtosecond X-ray pulses, opening the possibility of performing ultrafast studies of X-ray-induced phenomena. Particularly, the experimental realization of hetero-site-specific X-ray-pump/X-ray-probe spectroscopy is of special interest, in which an X-ray pump pulse is absorbed at one site within a molecule and an X-ray probe pulse follows the X-ray-induced dynamics at another site within the same molecule. Here we show experimental evidence of a hetero-site pump-probe signal. By using two-colour 10-fs X-ray pulses, we are able to observe the femtosecond time dependence for the formation of F ions during the fragmentation of XeF2 molecules following X-ray absorption at the Xe site.
Journal of Physical Chemistry C | 2015
Anne Marie March; Tadesse Assefa; Christian Bressler; Gilles Doumy; Andreas Galler; Wojciech Gawelda; E. P. Kanter; Zoltán Németh; Mátyás Pápai; Stephen H. Southworth; Linda Young; György Vankó
X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES for time-resolved experiments. We discuss technical improvements that will make valence-to-core XES a practical pump–probe technique.
Physical Review A | 2016
C. S. Lehmann; Antonio Picón; Christoph Bostedt; Artem Rudenko; Agostino Marinelli; Dooshaye Moonshiram; T. Osipov; Daniel Rolles; N. Berrah; Cédric Bomme; Maximilian Bucher; Gilles Doumy; Benjamin Erk; Ken R. Ferguson; Tais Gorkhover; Phay Ho; E. P. Kanter; B. Krässig; J. Krzywinski; Alberto Lutman; Anne Marie March; D. Ray; Linda Young; Stephen T. Pratt; S. H. Southworth
Citation: Lehmann, C. S., Picon, A., Bostedt, C., Rudenko, A., Marinelli, A., Moonshiram, D., . . . Southworth, S. H. (2016). Ultrafast x-ray-induced nuclear dynamics in diatomic molecules using femtosecond x-ray-pump-x-ray-probe spectroscopy. Physical Review A, 94(1), 7. doi:10.1103/PhysRevA.94.013426
Faraday Discussions | 2014
Christian Bressler; Wojciech Gawelda; Andreas Galler; Martin Meedom Nielsen; Villy Sundström; Gilles Doumy; Anne Marie March; Stephen H. Southworth; Linda Young; Gyoergy Vanko
We have studied the photoinduced low spin (LS) to high spin (HS) conversion of aqueous Fe(bpy)3 with pulse-limited time resolution. In a combined setup permitting simultaneous X-ray diffuse scattering (XDS) and spectroscopic measurements at a MHz repetition rate we have unraveled the interplay between intramolecular dynamics and the intermolecular caging solvent response with 100 ps time resolution. On this time scale the ultrafast spin transition including intramolecular geometric structure changes as well as the concomitant bulk solvent heating process due to energy dissipation from the excited HS molecule are long completed. The heating is nevertheless observed to further increase due to the excess energy between HS and LS states released on a subnanosecond time scale. The analysis of the spectroscopic data allows precise determination of the excited population which efficiently reduces the number of free parameters in the XDS analysis, and both combined permit extraction of information about the structural dynamics of the first solvation shell.
Nature Communications | 2018
Thomas J. Penfold; Jakub Szlachetko; Fabio G. Santomauro; Alexander Britz; Wojciech Gawelda; Gilles Doumy; Anne Marie March; Stephen H. Southworth; J. Rittmann; Rafael Abela; Majed Chergui; Christopher J. Milne
Nanostructures of transition metal oxides, such as zinc oxide, have attracted considerable interest for solar-energy conversion and photocatalysis. Both applications are sensitive to the transport and trapping of photoexcited charge carriers. The probing of electron trapping has recently become possible using time-resolved element-sensitive methods, such as X-ray spectroscopy. However, valence-band-trapped holes have so far escaped observation. Herein we use X-ray absorption spectroscopy combined with a dispersive X-ray emission spectrometer to probe the charge carrier relaxation and trapping processes in zinc oxide nanoparticles after above band-gap photoexcitation. Our results, supported by simulations, demonstrate that within 80 ps, photoexcited holes are trapped at singly charged oxygen vacancies, which causes an outward displacement by ~15% of the four surrounding zinc atoms away from the doubly charged vacancy. This identification of the hole traps provides insight for future developments of transition metal oxide-based nanodevices.Metal-oxide nanostructures are used in a range of light-driven applications, yet the fundamentals behind their properties are poorly understood. Here the authors probe photoexcited zinc oxide nanoparticles using time-resolved X-ray spectroscopy, identifying photocatalytically-active hole traps as oxygen vacancies in the lattice.