Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilles Dromart is active.

Publication


Featured researches published by Gilles Dromart.


Science | 2014

A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

John P. Grotzinger; Dawn Y. Sumner; L. C. Kah; K. Stack; S. Gupta; Lauren A. Edgar; David M. Rubin; Kevin W. Lewis; Juergen Schieber; N. Mangold; Ralph E. Milliken; P. G. Conrad; David J. DesMarais; Jack D. Farmer; K. L. Siebach; F. Calef; Joel A. Hurowitz; Scott M. McLennan; D. Ming; D. T. Vaniman; Joy A. Crisp; Ashwin R. Vasavada; Kenneth S. Edgett; M. C. Malin; D. Blake; R. Gellert; Paul R. Mahaffy; Roger C. Wiens; Sylvestre Maurice; J. A. Grant

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Science | 2013

Martian Fluvial Conglomerates at Gale Crater

Rebecca M. E. Williams; John P. Grotzinger; William E. Dietrich; S. Gupta; Dawn Y. Sumner; Roger C. Wiens; Nicolas Mangold; M. C. Malin; Kenneth S. Edgett; Sylvestre Maurice; O. Forni; O. Gasnault; A. M. Ollila; H. Newsom; Gilles Dromart; Marisa C. Palucis; R. A. Yingst; R. B. Anderson; K. E. Herkenhoff; S. Le Mouélic; W. Goetz; M. B. Madsen; A. Koefoed; J. K. Jensen; John C. Bridges; S. P. Schwenzer; Kevin W. Lewis; K. Stack; David M. Rubin; L. C. Kah

Going to Mars The Mars Science Laboratory spacecraft containing the Curiosity rover, was launched from Earth in November 2011 and arrived at Gale crater on Mars in August 2012. Zeitlin et al. (p. 1080) report measurements of the energetic particle radiation environment inside the spacecraft during its cruise to Mars, confirming the hazard likely to be posed by this radiation to astronauts on a future potential trip to Mars. Williams et al. (p. 1068, see the Perspective by Jerolmack) report the detection of sedimentary conglomerates (pebbles mixed with sand and turned to rock) at Gale crater. The rounding of the rocks suggests abrasion of the pebbles as they were transported by flowing water several kilometers or more from their source. Observations from the Curiosity rover of rounded pebbles in sedimentary rocks confirm ancient water flows on Mars. [Also see Perspective by Jerolmack] Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.


Science | 2014

Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars.

Scott M. McLennan; R. B. Anderson; James F. Bell; John C. Bridges; F. Calef; John Campbell; B. C. Clark; S. M. Clegg; P. G. Conrad; A. Cousin; D. J. Des Marais; Gilles Dromart; M. D. Dyar; Lauren A. Edgar; Bethany L. Ehlmann; Claude Fabre; O. Forni; O. Gasnault; R. Gellert; S. Gordon; A. Grant; John P. Grotzinger; S. Gupta; K. E. Herkenhoff; J. A. Hurowitz; Penelope L. King; S. Le Mouélic; L. A. Leshin; R. Leveille; Kevin W. Lewis

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine–rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.


Science | 2015

Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

John P. Grotzinger; Sanjeev Gupta; M. C. Malin; David M. Rubin; Juergen Schieber; K. L. Siebach; Dawn Y. Sumner; Kathryn M. Stack; Ashwin R. Vasavada; Raymond E. Arvidson; F. Calef; Lauren Edgar; W.F. Fischer; J. A. Grant; J. L. Griffes; L. C. Kah; Michael P. Lamb; Kevin W. Lewis; N. Mangold; M. E. Minitti; Marisa C. Palucis; Melissa S. Rice; Rebecca M. E. Williams; R. A. Yingst; D. Blake; Diana L. Blaney; P. G. Conrad; Joy A. Crisp; William E. Dietrich; Gilles Dromart

Ancient lake system at Gale crater Since 2012, the Curiosity rover has been diligently studying rocky outcrops on Mars, looking for clues about past water, climate, and habitability. Grotzinger et al. describe the analysis of a huge section of sedimentary rocks near Gale crater, where Mount Sharp now stands (see the Perspective by Chan). The features within these sediments are reminiscent of delta, stream, and lake deposits on Earth. Although individual lakes were probably transient, it is likely that there was enough water to fill in low-lying depressions such as impact craters for up to 10,000 years. Wind-driven erosion removed many of these deposits, creating Mount Sharp. Science, this issue p.10.1126/science.aac7575, see also p. 167 Mount Sharp now stands where there was once a large intercrater lake system. [Also see Perspective by Chan] INTRODUCTION Remote observational data suggest that large bodies of standing water existed on the surface of Mars in its early history. This would have required a much wetter climate than that of the present, implying greater availability of water on a global basis and enhanced potential for global habitability. However, based on assumptions of a vast water inventory and models of atmospheric erosion, theoretical studies suggest a climate that was wetter but not by enough to sustain large lakes, even in depressions such as impact craters. RATIONALE The Mars Science Laboratory mission’s rover, Curiosity, provides the capability to test hypotheses about Mars’s past climate. The focus of the mission is the exploration of a ~5-km-high mountain, Aeolis Mons (informally known as Mount Sharp), located near the center of the ~140-km-wide Gale impact crater. Mount Sharp is underlain by hundreds of meters of sedimentary rock strata deposited ~3.6 billion to 3.2 billion years ago. These sediments accumulated in aqueous environments, recording the history of Mars’s ancient climate. Because of Curiosity’s ability to study these strata where they are exposed near the base of Mount Sharp, we can directly test the hypothesis that large impact craters were capable of accumulating and storing water as lakes for substantial periods of time. RESULTS Over the course of 2 years, Curiosity studied dozens of outcrops distributed along a ~9-km transect that also rose ~75 m in elevation. Image data were used to measure the geometry and grain sizes of strata and to survey the textures associated with sediment deposition and diagenesis. Erosion of Gale’s northern crater wall and rim generated gravel and sand that were transported southward in shallow streams. Over time, these stream deposits advanced toward the crater interior, transitioning downstream into finer-grained (sand-sized), southward-advancing delta deposits. These deltas marked the boundary of an ancient lake where the finest (mud-sized) sediments accumulated, infilling both the crater and its internal lake basin. After infilling of the crater, the sedimentary deposits in Gale crater were exhumed, probably by wind-driven erosion, creating Mount Sharp. The ancient stream and lake deposits are erosional remnants of superimposed depositional sequences that once extended at least 75 m, and perhaps several hundreds of meters, above the current elevation of the crater floor. Although the modern landscape dips northward away from Mount Sharp, the ancient sedimentary deposits were laid down along a profile that projected southward beneath Mount Sharp and indicate that a basin once existed where today there is a mountain. CONCLUSION Our observations suggest that individual lakes were stable on the ancient surface of Mars for 100 to 10,000 years, a minimum duration when each lake was stable both thermally (as liquid water) and in terms of mass balance (with inputs effectively matching evaporation and loss of water to colder regions). We estimate that the stratigraphy traversed thus far by Curiosity would have required 10,000 to 10,000,000 years to accumulate, and even longer if overlying strata are included. Though individual lakes may have come and gone, they were probably linked in time through a common groundwater table. Over the long term, this water table must have risen at least tens of meters to enable accumulation of the delta and lake deposits observed by Curiosity in Gale crater. Inclined strata in the foreground dip southward toward Mount Sharp and represent ancient delta deposits. These deposits transition into strata in the mid-field that were deposited in ancient lakes. The buttes and mesas in the background contain younger deposits that overlie and postdate the lake deposits beneath Mount Sharp. The outcrop in the foreground is about 6 m wide, and the buttes and mesas in the background are hundreds of meters wide and tens of meters high. The image has been white-balanced. [Credit: NASA/Caltech/JPL/MSSS] The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).


Geodinamica Acta | 2000

Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints

François Guillocheau; Cécile Robin; Pascal Allemand; Sylvie Bourquin; Nicolas Brault; Gilles Dromart; Roselyne Friedenberg; Jean-Pierre Garcia; Jean-Michel Gaulier; Fabrice Gaumet; Bernard Grosdoy; Franck Hanot; Paul Le Strat; Monique Mettraux; Thierry Nalpas; Christophe Prijac; Christophe Rigollet; Olivier Serrano; Gilles Grandjean

Abstract 3D stratigraphic geometries of the intracratonic Meso-Cenozoic Paris Basin were obtained by sequence stratigraphic correlations of around 1 100 wells (well-logs). The basin records the major tectonic events of the western part of the Eurasian Plate, i.e. opening and closure of the Tethys and opening of the Atlantic. From earlier Triassic to Late Jurassic, the Paris Basin was a broad subsiding area in an extensional framework, with a larger size than the present-day basin. During the Aalenian time, the subsidence pattern changes drastically (early stage of the central Atlantic opening). Further steps of the opening of the Ligurian Tethys (base Hettangian, late Pliensbachian;...) and its evolution into an oceanic domain (passive margin, Callovian) are equally recorded in the tectono-sedimentary history. The Lower Cretaceous was characterized by NE–SW compressive medium wavelength unconformities (late Cimmerian–Jurassic/Cretaceous boundary and intra-Berriasian and late Aptian unconformities) coeval with opening of the Bay of Biscay. These unconformities are contemporaneous with a major decrease of the subsidence rate. After an extensional period of subsidence (Albian to Turonian), NE–SW compression started in late Turonian time with major folding during the Late Cretaceous. The Tertiary was a period of very low subsidence in a compressional framework. The second folding stage occurred from the Lutetian to the Lower Oligocene (N–S compression) partly coeval with the E–W extension of the Oligocene rifts. Further compression occurred in the early Burdigalian and the Late Miocene in response to NE–SW shortening. Overall uplift occurred, with erosion, around the Lower/Middle Pleistocene boundary.


Science | 2013

Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars

P.-Y. Meslin; O. Gasnault; Olivier Forni; S. Schröder; A. Cousin; G. Berger; S. M. Clegg; J. Lasue; S. Maurice; Violaine Sautter; S. Le Mouélic; Roger C. Wiens; C. Fabre; W. Goetz; David L. Bish; Nicolas Mangold; Bethany L. Ehlmann; N. Lanza; A.-M. Harri; R. B. Anderson; E. B. Rampe; Timothy H. McConnochie; P. Pinet; Diana L. Blaney; R. Leveille; D. Archer; B. L. Barraclough; Steve Bender; D. Blake; Jennifer G. Blank

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.


Earth and Planetary Science Letters | 2003

Ice age at the Middle–Late Jurassic transition?

Gilles Dromart; Jean-Pierre Garcia; Stéphanie Picard; François Atrops; Christophe Lécuyer; Simon M.F. Sheppard

A detailed record of sea surface temperatures in the Northern Hemisphere based on migration of marine invertebrate fauna (ammonites) and isotopic thermometry (δ18O values of shark tooth enamel) indicates a severe cooling at the Middle–Late Jurassic transition (MLJT), about 160 Ma ago. The magnitude of refrigeration (1–3°C for lower middle latitudes) and its coincidence in time with an abrupt global-scale fall of sea level documented through sequence stratigraphy are both suggestive of continental ice formation at this time. Ice sheets may have developed over the high-latitude mountainous regions of Far-East Russia. The drastic cooling just post-dated the Middle–Late Callovian widespread deposition of organic-rich marine sediments (e.g. northwestern Europe, Central Atlantic, and Arabian Peninsula). This thermal deterioration can thus be ascribed to a downdraw in atmospheric CO2 via enhanced organic carbon burial which acted as a negative feedback effect (i.e. the inverse greenhouse effect). The glacial episode of the MLJT climaxed in the Late Callovian, lasted about 2.6 Myr, and had a pronounced asymmetrical pattern composed of an abrupt (∼0.8 Myr) temperature fall opposed to a long-term (∼1.8 Myr), stepwise recovery. The glacial conditions at the MLJT reveal that atmospheric CO2 levels could have dropped temporarily to values lower than 500 ppmv during Mesozoic times.


Journal of Geophysical Research | 2014

Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars

M. Nachon; Samuel Michael Clegg; N. Mangold; Susanne Schröder; L. C. Kah; Gilles Dromart; A. M. Ollila; Jeffrey R. Johnson; D. Z. Oehler; John C. Bridges; S. Le Mouélic; O. Forni; Roger C. Wiens; R. B. Anderson; Diana L. Blaney; James F. Bell; B. C. Clark; A. Cousin; M. D. Dyar; Bethany L. Ehlmann; C. Fabre; O. Gasnault; John P. Grotzinger; J. Lasue; E. Lewin; R. Leveille; Scott M. McLennan; Sylvestre Maurice; P.-Y. Meslin; W. Rapin

The Curiosity rover has analyzed abundant light-toned fracture-fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire similar to 5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur-rich fluids may have originated in previously precipitated sulfate-rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.


Journal of Geophysical Research | 2005

Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars

Cathy Quantin; Pascal Allemand; N. Mangold; Gilles Dromart; Christophe Delacourt

[1] Valley networks on Mars are the most obvious features attesting that different geologic processes and possibly climatic conditions existed in the past. THEMIS images reveal valley networks within Melas Chasma, in Valles Marineris, a Hesperian-age canyon system. The valley networks in Melas Chasma are dense and highly organized, and the heads of the valleys are scattered at different elevations. All these features suggest that the networks were fed by precipitation. The morphological details reveal inner channels on some valley floors, attesting that water flowed within these valleys. On the DEM, the valleys flow into a completely enclosed depression. The edge of this feature follows a MOLA contour line, and the depression shows many sedimentary morphologies suggesting lacustrine environment. These landforms are located on remnants of layered deposits possibly composed of sulfate layers suggesting that fluvial activity could have contributed to the erosion of the layered terrains in Valles Marineris. Collectively, the features in Melas Chasma are a maximum of Hesperian in age. These results suggest that warm, wet environmental conditions on Mars persisted through the Hesperian and were present during the formation of Valles Marineris. The evidence for a paleolake in Melas Chasma attests to adequate environmental conditions for life development through the Hesperian period.


Chemical Geology | 2002

Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England)

Stéphanie Picard; Christophe Lécuyer; Jean-Alix Barrat; Jean-Pierre Garcia; Gilles Dromart; Simon M.F. Sheppard

The rare earth element (REE) chemistry of Jurassic shelf seawater from western Europe (Anglo-Paris Basin) was investigated by analyzing the fish and reptile teeth deposited in shallow to deeper water (<200 m) environments. REE patterns in apatites are controlled by the host sediments. Vertebrate teeth sampled from the siliciclastic sediments (calcareous sandstones and shales) show flat shale-normalized REE patterns that reflect the dominant influence of the continental source from which the REE were derived. Carbonate deposits, protected from the clastic sources, contain fish and reptile teeth whose REE patterns reflect more accurately the REE composition of the overlying water column. The REE patterns are similar through the Bajocian to the Oxfordian and are characterized by a depletion in heavy rare earth element (Dy/YbN=1.8–5.0) compared to modern seawater compositions (Dy/YbN=0.8–0.9). The fractionations among HREE in the Jurassic seawater are more efficient than in modern oceans and increases with depth instead of decreasing. These HREE removal processes operated as early as the Paleozoic and disappeared during the Late Cretaceous. The fractionation of HREE relative to LREE is correlated with the increasing depth of the basin as indicated by two independent criteria that are the sedimentary structures and the oxygen-isotope composition of coexisting brachiopods. The Dy/YbN ratio of the marine biogenic phosphates can be used as a proxy of paleo-water depths at the scale of a water mass. Ce anomalies (ΩCe) in biogenic apatite-bearing limestones are variable and systematically negative. Relative to modern surface seawater and Bathonian values (mean ΩCe=−0.63±0.10), weak Ce anomalies during the Callovian (mean ΩCe=−0.21±0.09) suggest the onset of more reducing conditions. This redox change coincided with an increase of seawater temperatures as suggested by the oxygen-isotope compositions measured on the same teeth. We speculated that the Callovian low ΩCe could result from a decrease in the pO2 due to the warming of seawater.

Collaboration


Dive into the Gilles Dromart's collaboration.

Top Co-Authors

Avatar

Roger C. Wiens

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

O. Gasnault

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Forni

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana L. Blaney

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. M. Clegg

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge