Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilles Faury is active.

Publication


Featured researches published by Gilles Faury.


Journal of Clinical Investigation | 1998

Novel arterial pathology in mice and humans hemizygous for elastin.

Dean Y. Li; Gilles Faury; Douglas G. Taylor; Elaine C. Davis; Walter A. Boyle; Robert P. Mecham; Peter Stenzel; Beth B. Boak; Mark T. Keating

Obstructive vascular disease is an important health problem in the industrialized world. Through a series of molecular genetic studies, we demonstrated that loss-of-function mutations in one elastin allele cause an inherited obstructive arterial disease, supravalvular aortic stenosis (SVAS). To define the mechanism of elastins effect, we generated mice hemizygous for the elastin gene (ELN +/-). Although ELN mRNA and protein were reduced by 50% in ELN +/- mice, arterial compliance at physiologic pressures was nearly normal. This discrepancy was explained by a paradoxical increase of 35% in the number of elastic lamellae and smooth muscle in ELN +/- arteries. Examination of humans with ELN hemizygosity revealed a 2. 5-fold increase in elastic lamellae and smooth muscle. Thus, ELN hemizygosity in mice and humans induces a compensatory increase in the number of rings of elastic lamellae and smooth muscle during arterial development. Humans are exquisitely sensitive to reduced ELN expression, developing profound arterial thickening and markedly increased risk of obstructive vascular disease.


Journal of Clinical Investigation | 2003

Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency

Gilles Faury; Mylène Pezet; Russell H. Knutsen; Walter A. Boyle; Scott P. Heximer; Sean E. McLean; Robert K. Minkes; Kendall J. Blumer; Attila Kovacs; Daniel P. Kelly; Dean Y. Li; Barry Starcher; Robert P. Mecham

Supravalvular aortic stenosis is an autosomal-dominant disease of elastin (Eln) insufficiency caused by loss-of-function mutations or gene deletion. Recently, we have modeled this disease in mice (Eln+/-) and found that Eln haploinsufficiency results in unexpected changes in cardiovascular hemodynamics and arterial wall structure. Eln+/- animals were found to be stably hypertensive from birth, with a mean arterial pressure 25-30 mmHg higher than their wild-type counterparts. The animals have only moderate cardiac hypertrophy and live a normal life span with no overt signs of degenerative vascular disease. Examination of arterial mechanical properties showed that the inner diameters of Eln+/- arteries were generally smaller than wild-type arteries at any given intravascular pressure. Because the Eln+/- mouse is hypertensive, however, the effective arterial working diameter is comparable to that of the normotensive wild-type animal. Physiological studies indicate a role for the renin-angiotensin system in maintaining the hypertensive state. The association of hypertension with elastin haploinsufficiency in humans and mice strongly suggests that elastin and other proteins of the elastic fiber should be considered as causal genes for essential hypertension.


Pathologie Biologie | 2001

Function-structure relationship of elastic arteries in evolution: from microfibrils to elastin and elastic fibres.

Gilles Faury

Evolution of species has led to the appearance of circulatory systems including blood vessels and one or more pulsatile pumps, typically resulting in a low-pressurised open circulation in most invertebrates and a high-pressurised closed circulation in vertebrates. In both open and closed circulations, the large elastic arteries proximal to the heart damp out the pulsatile flow and blood pressure delivered by the heart, in order to limit distal shear stress and to allow regular irrigation of downstream organs. To achieve this goal, networks of resilient and stiff proteins adapted to each situation--i.e. low or high blood pressure--have been developed in the arterial wall to provide it with non-linear elasticity. In the low-pressurised circulation of some invertebrates, the mechanical properties of arteries can almost be entirely microfibril-based, whereas, in high-pressurised circulations, they are due to an interplay between a highly resilient protein, an elastomer in the octopus and elastin in most vertebrates, and the rather stiff protein collagen. In vertebrate development, elastin is incorporated in elastic fibres, on a earlier deposited scaffold of microfibrils. The elastic fibres are then arranged in functional concentric elastic lamellae and, with the smooth muscle cells, lamellar units. The microfibrils may also play a direct functional role in all mature arteries of high- and low-pressurised circulations. Finally, since blood pressure regularly increases with developmental stages, it appears possible that the early deposition of microfibrils, which are highly-conserved in evolution, corresponds, at least in part, to an early microfibril-driven elasticity in low-pressurised arteries, present across species. In vertebrates, when pressure developmentally rises above a threshold value, the vascular wall stress may turn on the expression of other resilient protein genes, including the elastin gene. Elastin would then be deposited on microfibrils and resulting in the elastic fibre network and elastic lamellae whose mechanical properties are adapted to allow for proper arterial work at higher pressures.


Journal of Vascular Research | 1995

Effect of Elastin Peptides on Vascular Tone

Gilles Faury; M.T. Ristori; Jean Verdetti; Marie-Paule Jacob; Ladislas Robert

Elastin peptides are present in human blood. As elastin receptors exist on several cell types, especially endothelial cells, this investigation was carried out to study the effect of elastin peptides on vascular tone. For this purpose, rat aortic rings were mounted in an organ bath for isometric tension measurements. Elastin peptides (kappa-elastin) were added in the concentration range of 0.1 ng/ml to 1 microgram/ml, concentrations similar to those found in the circulating blood. In rat aortic rings, precontracted or not with noradrenaline (10(-6) M), elastin peptides induced an endothelium-dependent vasodilation. The pretreatment of aortic rings with N-omega-nitro-L-arginine methyl ester (10(-5) M), an inhibitor of nitric oxide (NO) production, or with indomethacin (10(-5) M), an inhibitor of cyclooxygenase, prevented elastin peptide-induced vasodilation. These findings suggest that elastin peptides act through the synthesis of prostanoids, leading to the production of NO. Moreover, this relaxant effect of elastin peptides was decreased or inhibited when aortic rings were treated with lactose (10(-5) to 10(-2) M) or laminin (10(-6) to 10(-4) mg/ml) whereas lactose or laminin was unable to inhibit acetylcholine-induced vasodilation. These findings suggest that the inhibitory effects of lactose and laminin are specific for elastin peptide receptors and are in agreement with previous studies on these receptors. As there is evidence of the degradation of elastin in several vascular diseases, the concept that elastin peptides may contribute to the control of vascular tone is discussed.


Circulation Research | 1998

Action of Tropoelastin and Synthetic Elastin Sequences on Vascular Tone and on Free Ca2+ Level in Human Vascular Endothelial Cells

Gilles Faury; Stéphanie Garnier; Anthony S. Weiss; Jean Wallach; Tamas Fulop; Marie-Paule Jacob; Robert P. Mecham; Ladislas Robert; Jean Verdetti

The elastic properties of extensible tissues such as arteries and skin are mainly due to the presence of elastic fibers whose major component is the extracellular matrix protein elastin. Pathophysiological degradation of this protein leads to the generation of elastin peptides that have been identified in the circulation in the ng/mL to microg/mL range. Similar concentrations of an elastin peptide preparation (kappa-elastin) were previously demonstrated to induce, among other biological actions, a dose- and endothelium-dependent vasorelaxation mediated by the elastin/laminin receptor and by endothelial NO production. To determine the elastin sequence(s) responsible for vasomotor activity and to learn more about possible signaling pathways, we have compared the action of different concentrations (10(-13) to 10(-7) mol/L) of recombinant human tropoelastin, eight synthetic elastin peptides, and a control peptide (VPVGGA) on both rat aortic ring tension and [Ca2+]i of cultured human umbilical vein endothelial cells. No vasoactivity could be detected for VPVGGA and for the elastin-related sequences VGVGVA, PGVGVA, and GVGVA. Tropoelastin, VGV, PGV, and VGVAPG were found to induce an endothelium- and dose-dependent vasorelaxation and to increase endothelial [Ca2+]i, whereas PVGV and VGVA produced these effects only at low concentration (10(-11) mol/L). A likely candidate for mediating the elastin peptide-related effects is the elastin/laminin receptor, since the presence of lactose strongly inhibited the vasoactivity associated with these compounds. Our results show that although the flanking amino acids modulate its activity, VGV seems to be the core sequence recognized by the elastin receptor.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Discrete Contributions of Elastic Fiber Components to Arterial Development and Mechanical Compliance

Luca Carta; Jessica E. Wagenseil; Russell H. Knutsen; Boubacar Mariko; Gilles Faury; Elaine C. Davis; Barry Starcher; Robert P. Mecham; Francesco Ramirez

Objective—Even though elastin and fibrillin-1 are the major structural components of elastic fibers, mutations in elastin and fibrillin-1 lead to narrowing of large arteries in supravascular aortic stenosis and dilation of the ascending aorta in Marfan syndrome, respectively. A genetic approach was therefore used here to distinguish the differential contributions of elastin and fibrillin-1 to arterial development and compliance. Methods and Results—Key parameters of cardiovascular function were compared among adult mice haploinsufficient for elastin (Eln+/−), fibrillin-1 (Fbn1+/−), or both proteins (dHet). Physiological and morphological comparisons correlate elastin haploinsufficiency with increased blood pressure and vessel length and tortuosity in dHet mice, and fibrillin-1 haploinsufficiency with increased aortic diameter in the same mutant animals. Mechanical tests confirm that elastin and fibrillin-1 impart elastic recoil and tensile strength to the aortic wall, respectively. Additional ex vivo analyses demonstrate additive and overlapping contributions of elastin and fibrillin-1 to the material properties of vascular tissues. Lastly, light and electron microscopy evidence implicates fibrillin-1 in the hypertension-promoted remodeling of the elastin-deficient aorta. Conclusions—These results demonstrate that elastin and fibrillin-1 have both differential and complementary roles in arterial wall formation and function, and advance our knowledge of the structural determinants of vascular physiology and disease.


Rejuvenation Research | 2008

Elastin haploinsufficiency induces alternative aging processes in the aorta

Mylène Pezet; Marie-Paule Jacob; Brigitte Escoubet; Dealba Gheduzzi; Emmanuelle Tillet; Pascale Perret; Philippe Huber; Daniela Quaglino; Roger Vranckx; Dean Y. Li; Barry Starcher; Walter A. Boyle; Robert P. Mecham; Gilles Faury

Elastin, the main component of elastic fibers, is synthesized only in early life and provides the blood vessels with their elastic properties. With aging, elastin is progressively degraded, leading to arterial enlargement, stiffening, and dysfunction. Also, elastin is a key regulator of vascular smooth muscle cell proliferation and migration during development since heterozygous mutations in its gene (Eln) are responsible for a severe obstructive vascular disease, supravalvular aortic stenosis, isolated or associated to Williams syndrome. Here, we have studied whether early elastin synthesis could also influence the aging processes, by comparing the structure and function of ascending aorta from 6- and 24-month-old Eln+/- and Eln+/+ mice. Eln+/- animals have high blood pressure and arteries with smaller diameters and more rigid walls containing additional although thinner elastic lamellas. Nevertheless, longevity of these animals is unaffected. In young adult Eln+/- mice, some features resemble vascular aging of wild-type animals: cardiac hypertrophy, loss of elasticity of the arterial wall through enhanced fragmentation of the elastic fibers, and extracellular matrix accumulation in the aortic wall, in particular in the intima. In Eln+/- animals, we also observed an age-dependent alteration of endothelial vasorelaxant function. On the contrary, Eln+/- mice were protected from several classical consequences of aging visible in aged Eln+/+ mice, such as arterial wall thickening and alteration of alpha(1)-adrenoceptor-mediated vasoconstriction. Our results suggest that early elastin expression and organization modify arterial aging through their impact on both vascular cell physiology and structure and mechanics of blood vessels.


Mechanisms of Ageing and Development | 1997

Effect of age on the vasodilatory action of elastin peptides

Gilles Faury; A Chabaud; M.T. Ristori; Ladislas Robert; Jean Verdetti

We have recently shown, on young adult rat aorta rings, that elastin peptides induce a dose and endothelium-dependent vasodilation mediated by the 67 kDa subunit of the high affinity elastin-laminin receptor and, at least in part, by EDRF (NO). Here we have studied the effects of elastin peptides at circulating concentrations and below, on noradrenaline-contracted rat aortic rings, as a function of age. First, we have observed that, unlike 2-month-old (2M), 4-6-month-old (4M) and 12-month-old (12M) rat aorta rings, 30-month-old (30M) rat aorta rings were unable to maintain their contraction in long lasting experiments. Secondly, elastin peptides at physiological circulating concentrations (10(-6)-10(-3) mg/ml) induce a dose-dependent vasodilation on 4M rings. By contrast, only higher elastin peptide concentrations (10(-3) mg/ml) were effective on 12M rings, whereas rings from both younger (2M) and older animals (30M) did not respond to elastin peptides. Finally, using lactose and laminin as inhibitors, we have demonstrated that elastin peptide-induced vasodilation on 4M and 12M rings is mediated by the 67 kDa subunit of the elastin-laminin receptor. These experiments suggest that the functional availability of the 67 kDa subunit of the elastin-laminin receptor changes with age. It could be hypothesized that in young animals (0-2M) the reusable shuttle role recently demonstrated for the 67 kDa receptor subunit during elastic fiber formation leads to a major decrease in its availability for signal transduction. On the contrary, in adult animals. (4-12M), when developmental elastogenesis is completed, this subunit is essential for extracellular signal transduction. Inefficiency of this receptor in old animals (30M) can be attributed to its uncoupling from its transduction pathway, as previously shown on human cells. Finally, the age-dependent variations of circulating elastin peptide concentration and elastin-laminin receptor responsiveness to elastin peptides are two independent parameters which could influence the vascular tension regulation.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Relation between outer and luminal diameter in cannulated arteries

Gilles Faury; Gail M. Maher; Dean Y. Li; Mark T. Keating; Robert P. Mecham; Walter A. Boyle

Resistance in blood vessels is directly related to the inner (luminal) diameter (ID). However, ID can be difficult to measure during physiological experiments because of poor transillumination of thick-walled or tightly constricted vessels. We investigated whether the wall cross-sectional area (WCSA) in cannulated arteries is nearly constant, allowing IDs to be calculated from outer diameters (OD) using a single determination of WCSA. With the use of image analysis, OD and ID were directly measured using either transillumination or a fluorescent marker in the lumen. IDs from a variety of vessel types were calculated from WCSA at several reference pressures. Calculated IDs at all of the reference WCSA were within 5% (mean <1%) of the corresponding measured IDs in all vessel types studied, including vessels from heterozygote elastin knockout animals. This was true over a wide range of transmural pressures, during treatment with agonists, and before and after treatment with KCN. In conclusion, WCSA remains virtually constant in cannulated vessels, allowing accurate determination of ID from OD measurement under a variety of experimental conditions.Resistance in blood vessels is directly related to the inner (luminal) diameter (ID). However, ID can be difficult to measure during physiological experiments because of poor transillumination of thick-walled or tightly constricted vessels. We investigated whether the wall cross-sectional area (WCSA) in cannulated arteries is nearly constant, allowing IDs to be calculated from outer diameters (OD) using a single determination of WCSA. With the use of image analysis, OD and ID were directly measured using either transillumination or a fluorescent marker in the lumen. IDs from a variety of vessel types were calculated from WCSA at several reference pressures. Calculated IDs at all of the reference WCSA were within 5% (mean <1%) of the corresponding measured IDs in all vessel types studied, including vessels from heterozygote elastin knockout animals. This was true over a wide range of transmural pressures, during treatment with agonists, and before and after treatment with KCN. In conclusion, WCSA remains virtually constant in cannulated vessels, allowing accurate determination of ID from OD measurement under a variety of experimental conditions.


Journal of Applied Physiology | 2008

Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure

Adrian Shifren; Anthony G. Durmowicz; Russell H. Knutsen; Gilles Faury; Robert P. Mecham

Elastin is a major structural component of large elastic arteries and a principal determinant of arterial biomechanical properties. Elastin loss-of-function mutations in humans have been linked to the autosomal-dominant disease supravalvular aortic stenosis, which is characterized by stenotic lesions in both the systemic and pulmonary circulations. To better understand how elastin insufficiency influences the pulmonary circulation, we evaluated pulmonary cardiovascular physiology in a unique set of transgenic and knockout mice with graded vascular elastin dosage (range 45-120% of wild type). The central pulmonary arteries of elastin-insufficient mice had smaller internal diameters (P < 0.0001), thinner walls (P = 0.002), and increased opening angles (P = 0.002) compared with wild-type controls. Pulmonary circulatory pressures, measured by right ventricular catheterization, were significantly elevated in elastin-insufficient mice (P < 0.0001) and showed an inverse correlation with elastin level. Although elastin-insufficient animals exhibited mild to moderate right ventricular hypertrophy (P = 0.0001) and intrapulmonary vascular remodeling, the changes were less than expected, given the high right ventricular pressures, and were attenuated compared with those seen in hypoxia-induced models of pulmonary arterial hypertension. The absence of extensive pathological cardiac remodeling at the high pressures in these animals suggests a developmental adaptation designed to maintain right-sided cardiac output in a vascular system with altered elastin content.

Collaboration


Dive into the Gilles Faury's collaboration.

Top Co-Authors

Avatar

Jean Verdetti

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

Robert P. Mecham

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry Starcher

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Walter A. Boyle

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Boubacar Mariko

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francine Cand

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar

Mylène Pezet

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar

Russell H. Knutsen

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge