Gilles Lebeau
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gilles Lebeau.
Siam Journal on Control and Optimization | 1992
Claude Bardos; Gilles Lebeau; Jeffrey Rauch
For the observation or control of solutions of second-order hyperbolic equation in
Publications Mathématiques de l'IHÉS | 1991
Jean-Michel Bismut; Gilles Lebeau
\mathbb{R}_t \times \Omega
Annales Scientifiques De L Ecole Normale Superieure | 2003
Belhassen Dehman; Gilles Lebeau; Enrique Zuazua
, Ralston’s construction of localized states [Comm. Pure Appl. Math., 22 (1969), pp. ...
Journal of Differential Equations | 1984
Gilles Lebeau; Michelle Schatzman
© Publications mathématiques de l’I.H.É.S., 1991, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http:// www.ihes.fr/IHES/Publications/Publications.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.
Journal of the American Mathematical Society | 2008
Nicolas Burq; Gilles Lebeau; Fabrice Planchon
In this paper, we analyze the exponential decay property of solutions of the semilinear wave equation in R3 with a damping term which is effective on the exterior of a ball. Under suitable and natural assumptions on the nonlinearity we prove that the exponential decay holds locally uniformly for finite energy solutions provided the nonlinearity is subcritical at infinity. Subcriticality means, roughly speaking, that the nonlinearity grows at infinity at most as a power p<5. The method of proof combines classical energy estimates for the linear wave equation allowing to estimate the total energy of solutions in terms of the energy localized in the exterior of a ball, Strichartzs estimates and results by P. Gerard on microlocal defect measures and linearizable sequences. We also give an application to the stabilization and controllability of the semilinear wave equation in a bounded domain under the same growth condition on the nonlinearity but provided the nonlinearity has been cut-off away from the boundary.
Siam Journal on Control and Optimization | 2009
Belhassen Dehman; Gilles Lebeau
In this paper, we study the following problem: let
Communications in Partial Differential Equations | 2007
Sergio Guerrero; Gilles Lebeau
\Omega
Numerische Mathematik | 2016
Konstantin Brenner; Mayya Groza; Cindy Guichard; Gilles Lebeau; Roland Masson
be a half-space of
Annals of Probability | 2010
Gilles Lebeau; Laurent Michel
\mathbb{R}^N
Experimental Mathematics | 2003
Mark Asch; Gilles Lebeau
, defined by