Gilles Orban de Xivry
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gilles Orban de Xivry.
Proceedings of SPIE | 2010
S. Rabien; N. Ageorges; L. Barl; Udo Beckmann; T. Blümchen; Marco Bonaglia; J. Borelli; Joar Brynnel; Lorenzo Busoni; Luca Carbonaro; R. Davies; M. Deysenroth; O. Durney; M. Elberich; Simone Esposito; Victor Gasho; Wolfgang Gässler; Hans Gemperlein; R. Genzel; Richard F. Green; M. Haug; M. L. Hart; P. Hubbard; S. Kanneganti; Elena Masciadri; J. Noenickx; Gilles Orban de Xivry; D. Peter; A. Quirrenbach; M. Rademacher
ARGOS is the Laser Guide Star adaptive optics system for the Large Binocular Telescope. Aiming for a wide field adaptive optics correction, ARGOS will equip both sides of LBT with a multi laser beacon system and corresponding wavefront sensors, driving LBTs adaptive secondary mirrors. Utilizing high power pulsed green lasers the artificial beacons are generated via Rayleigh scattering in earths atmosphere. ARGOS will project a set of three guide stars above each of LBTs mirrors in a wide constellation. The returning scattered light, sensitive particular to the turbulence close to ground, is detected in a gated wavefront sensor system. Measuring and correcting the ground layers of the optical distortions enables ARGOS to achieve a correction over a very wide field of view. Taking advantage of this wide field correction, the science that can be done with the multi object spectrographs LUCIFER will be boosted by higher spatial resolution and strongly enhanced flux for spectroscopy. Apart from the wide field correction ARGOS delivers in its ground layer mode, we foresee a diffraction limited operation with a hybrid Sodium laser Rayleigh beacon combination.
Proceedings of SPIE | 2016
Olivier Absil; Dimitri Mawet; Mikael Karlsson; Brunella Carlomagno; Valentin Christiaens; Denis Defrere; Christian Delacroix; Bruno Femenía Castellá; Pontus Forsberg; J. H. Girard; Carlos Gonzalez; Serge Habraken; Philip M. Hinz; Elsa Huby; Aïssa Jolivet; Keith Matthews; J. Milli; Gilles Orban de Xivry; E. Pantin; Pierre Piron; Maddalena Reggiani; Garreth Ruane; Gene Serabyn; Jean Surdej; Konrad R. W. Tristram; Ernesto Vargas Catalan; O. Wertz; Peter L. Wizinowich
For several years, we have been developing vortex phase masks based on sub-wavelength gratings, known as Annular Groove Phase Masks. Etched onto diamond substrates, these AGPMs are currently designed to be used in the thermal infrared (ranging from 3 to 13 μm). Our AGPMs were first installed on VLT/NACO and VLT/VISIR in 2012, followed by LBT/LMIRCam in 2013 and Keck/NIRC2 in 2015. In this paper, we review the development, commissioning, on-sky performance, and early scientific results of these new coronagraphic modes and report on the lessons learned. We conclude with perspectives for future developments and applications.
Proceedings of SPIE | 2010
Gilles Orban de Xivry; S. Rabien; L. Barl; Simone Esposito; Wolfgang Gaessler; Michael Hart; M. Deysenroth; Hans Gemperlein; L. Strüder; J. Ziegleder
Wide field correction allowing large field to benefit from adaptive optics (AO) is challenging in more than one aspect. We address here the wavefront sensor (WFS) detector side where, in addition to high sensitivity and low noise, the simultaneous detection of multiple laser beacons and the large number of sub-apertures in a Shack-Hartmann WFS require a detector to have a large imaging area while preserving a very high readout frame rate. The detector considered has a frame area of 264×264 pixels with a pixel size of 48 microns. By splitting the image into two framestore areas during readout, repetition rates of more than 1000 frames per second can be achieved. The electronic noise contribution is approximately 3 electrons at the operating temperature. We therefore analyze its performances, showing it fulfills the requirements, in a wavefront sensing application: the measurement of centroids in the case of a Shack-Hartmann WFS for the Argos AO project.
Proceedings of SPIE | 2014
S. Rabien; L. Barl; Udo Beckmann; Marco Bonaglia; J. Borelli; Joar Brynnel; Peter Buschkamp; Lorenzo Busoni; Julian C. Christou; C. Connot; Richard Davies; M. Deysenroth; Simone Esposito; Wolfgang Gässler; Hans Gemperlein; Michael Hart; M. Kulas; Michael Lefebvre; Michael Lehmitz; Tommaso Mazzoni; E. Nussbaum; Gilles Orban de Xivry; D. Peter; A. Quirrenbach; Walfried Raab; Gustavo Rahmer; Jesper Storm; J. Ziegleder
ARGOS is the Laser Guide Star and Wavefront sensing facility for the Large Binocular Telescope. With first laser light on sky in 2013, the system is currently undergoing commissioning at the telescope. We present the overall status and design, as well as first results on sky. Aiming for a wide field ground layer correction, ARGOS is designed as a multi- Rayleigh beacon adaptive optics system. A total of six powerful pulsed lasers are creating the laser guide stars in constellations above each of the LBTs primary mirrors. With a range gated detection in the wavefront sensors, and the adaptive correction by the deformable secondary’s, we expect ARGOS to enhance the image quality over a large range of seeing conditions. With the two wide field imaging and spectroscopic instruments LUCI1 and LUCI2 as receivers, a wide range of scientific programs will benefit from ARGOS. With an increased resolution, higher encircled energy, both imaging and MOS spectroscopy will be boosted in signal to noise by a large amount. Apart from the wide field correction ARGOS delivers in its ground layer mode, we already foresee the implementation of a hybrid Sodium with Rayleigh beacon combination for a diffraction limited AO performance.
Proceedings of SPIE | 2014
M. Kulas; J. Borelli; Wolfgang Gässler; D. Peter; S. Rabien; Gilles Orban de Xivry; Lorenzo Busoni; Marco Bonaglia; Tommaso Mazzoni; Gustavo Rahmer
Commissioning time for an instrument at an observatory is precious, especially the night time. Whenever astronomers come up with a software feature request or point out a software defect, the software engineers have the task to find a solution and implement it as fast as possible. In this project phase, the software engineers work under time pressure and stress to deliver a functional instrument control software (ICS). The shortness of development time during commissioning is a constraint for software engineering teams and applies to the ARGOS project as well. The goal of the ARGOS (Advanced Rayleigh guided Ground layer adaptive Optics System) project is the upgrade of the Large Binocular Telescope (LBT) with an adaptive optics (AO) system consisting of six Rayleigh laser guide stars and wavefront sensors. For developing the ICS, we used the technique Test- Driven Development (TDD) whose main rule demands that the programmer writes test code before production code. Thereby, TDD can yield a software system, that grows without defects and eases maintenance. Having applied TDD in a calm and relaxed environment like office and laboratory, the ARGOS team has profited from the benefits of TDD. Before the commissioning, we were worried that the time pressure in that tough project phase would force us to drop TDD because we would spend more time writing test code than it would be worth. Despite this concern at the beginning, we could keep TDD most of the time also in this project phase This report describes the practical application and performance of TDD including its benefits, limitations and problems during the ARGOS commissioning. Furthermore, it covers our experience with pair programming and continuous integration at the telescope.
Proceedings of SPIE | 2014
Marco Bonaglia; Lorenzo Busoni; Tommaso Mazzoni; Alfio Puglisi; J. Antichi; Simone Esposito; Gilles Orban de Xivry; S. Rabien
We present the results of the laboratory characterization of the ARGOS LGS wavefront sensor (LGSW) and dichroic units. ARGOS is the laser guide star adaptive optics system of the Large Binocular Telescope (LBT). It implements a Ground Layer Adaptive Optics (GLAO) correction for LUCI, an infrared imager and multi-object spectrograph (MOS), using 3 pulsed Rayleigh beacons focused at 12km altitude. The LGSW is a Shack-Hartman sensor having 15 × 15 subaspertures over the telescope pupil. Each LGS is independently stabilized for on-sky jitter and gated to reduce spot elongation. The 3 LGS pupils are stabilized to compensate mechanical flexure and are arranged on a single detector. Two units of LGSW have been produced and tested at Arcetri Observatory. We report on the results obtained in the pre-shipment laboratory test: internal active flexure compensation loop performance, optomechanical stability under different gravity conditions, thermal cycling, Pockels cells performance. We also update on the upcoming installation and commissioning campaign at LBT.
Proceedings of SPIE | 2014
Gilles Orban de Xivry; Marco Bonaglia; J. Borelli; Lorenzo Busoni; C. Connot; Simone Esposito; Wolfgang Gaessler; M. Kulas; Tommaso Mazzoni; Alfio Puglisi; S. Rabien; Jesper Storm; J. Ziegleder
Argos is the ground-layer adaptive optics system for the Large Binocular Telescope. In order to perform its wide-field correction, Argos uses three laser guide stars which sample the atmospheric turbulence. To perform the correction, Argos has at disposal three different wavefront sensing measurements : its three laser guide stars, a NGS tip-tilt, and a third wavefront sensor. We present the wavefront sensing architecture and its individual components, in particular: the finalized Argos pnCCD camera detecting the 3 laser guide stars at 1kHz, high quantum efficiency and 4e- noise; the Argos tip-tilt sensor based on a quad-cell avalanche photo-diodes; and the Argos wavefront computer. Being in the middle of the commissioning, we present the first wavefront sensing configurations and operations performed at LBT, and discuss further improvements in the measurements of the 3 laser guide star slopes as detected by the pnCCD.
Adaptive Optics for Extremely Large Telescopes 4 – Conference Proceedings | 2015
Gilles Orban de Xivry; Marco Bonaglia; J. Borelli; Lorenzo Busoni; M. Deysenroth; Simone Esposito; Wolfgang Gaessler; M. Kulas; Tommaso Mazzoni; D. Peter; S. Rabien; Gustavo Rahmer; J. Ziegleder; Alexander Sivitilli; Jesper Storm; Hans Gemperlein; Michael Lefebvre; Alfio Puglisi; Walfried Raab
We present the first results of Argos, the multiple laser guide star and wavefront sensing facility for the Large Binocular Telescope. This system will deliver an improvement by a factor of two in FWHM over the 4′×4′ field of view of both Luci instruments. Luci 1 and Luci 2 are two near-infrared wide field imagers and multi-object spectrographs which capability and efficiency will be boosted by the increased resolution and encircled energy.The first on-sky ground-layer adaptive optics (GLAO) loop closure with Argos has been achieved in Fall 2014 on the right eye of the telescope. Stable operations in closed-loop have been demonstrated in May 2015 with hour-long integration and repeated good performances over several nights. Since then, the commissioning has been proceeding with the installation of the left system and the beginning of the left on-sky operations in this Fall 2015. The next achievements will be to strengthen the operational aspects and to perform science demonstration in both imaging and spectroscopic modes. We first present the current status of the project and review the operational aspects. Then, we analyze the first combined Luci and Argos observations and discuss the performances and the gains provided by Argos in term of scientific capabilities.
arXiv: Instrumentation and Methods for Astrophysics | 2018
Jörg-Uwe Pott; Denis Defrere; Olivier Absil; Jean-Philippe Berger; W. C. Danchi; S. Ertel; A. Gallenne; François Hénault; Phil Hinz; Elsa Huby; Michael J. Ireland; Stefan Kraus; Lucas Labadie; Guillermo Martin; A. Matter; B. Mennesson; A. Mérand; Stefano Minardi; John D. Monnier; Barnaby Norris; Ettore Pedretti; Maddalena Reggiani; Eugene Serabyn; Jean Surdej; Konrad R. W. Tristram; Julien Woillez; Gilles Orban de Xivry; Jean-Baptiste Le Bouquin
Hi-5 is a high-contrast (or high dynamic range) infrared imager project for the VLTI. Its main goal is to characterize young extra-solar planetary systems and exozodiacal dust around southern main-sequence stars. In this paper, we present an update of the project and key technology pathways to improve the contrast achieved by the VLTI. In particular, we discuss the possibility to use integrated optics, proven in the near-infrared, in the thermal near-infrared (L and M bands, 3-5 μm) and advanced fringe tracking strategies. We also address the strong exoplanet science case (young exoplanets, planet formation, and exozodiacal disks) offered by this wavelength regime as well as other possible science cases such as stellar physics (fundamental parameters and multiplicity) and extragalactic astrophysics (active galactic nuclei and fundamental constants). Synergies and scientific preparation for other potential future instruments such as the Planet Formation Imager are also briefly discussed.
Proceedings of SPIE | 2012
Marco Bonaglia; Lorenzo Busoni; Luca Carbonaro; Fernando Quiròs Pacheco; Marco Xompero; Simone Esposito; Gilles Orban de Xivry; S. Rabien
In this paper we present the integration status of the ARGOS wavefront sensor and the results of the closed loop tests performed in laboratory. ARGOS is the laser guide star adaptive optics system of the Large Binocular Telescope. It is designed to implement a Ground Layer Adaptive Optics correction for LUCI, an infrared imaging camera and multi-object spectrograph, using 3 pulsed Rayleigh beacons focused at 12km altitude. The WFS is configured as a Shack-Hartman sensor having a 15 x 15 subaspertures over the telescope pupil. In the WFS each LGS is independently stabilized for on-sky jitter and range-gated to reduce spot elongation. The 3 LGS are arranged on a single lenslet array and detector by the use of off-axis optics in the final part of the WFS. The units of WFS are in the integration and testing phase at Arcetri Observatory premises. We describe here the test aimed to demonstrate the functionality of the WFS in an adaptive optics closed loop performed using the internal light sources of the WFS and a MEMS deformable mirror.