Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilles Peltier is active.

Publication


Featured researches published by Gilles Peltier.


Bioresource Technology | 2012

An economic, sustainability, and energetic model of biodiesel production from microalgae.

F. Delrue; P.-A. Setier; C. Sahut; L. Cournac; A. Roubaud; Gilles Peltier; A.-K. Froment

A new process evaluation methodology of microalgae biodiesel has been developed. Based on four evaluation criteria, i.e. the net energy ratio (NER), biodiesel production costs, greenhouse gases (GHG) emission rate and water footprint, the model compares various technologies for each step of the process, from cultivation to oil upgrading. An innovative pathway (hybrid raceway/PBR cultivation system, belt filter press for dewatering, wet lipid extraction, oil hydrotreating and anaerobic digestion of residues) shows good results in comparison to a reference pathway (doubled NER, lower GHG emission rate and water footprint). The production costs are still unfavourable (between 1.94 and 3.35 €/L of biodiesel). The most influential parameters have been targeted through a global sensitivity analysis and classified: (i) lipid productivity, (ii) the cultivation step, and (iii) the downstream processes. The use of low-carbon energy sources is required to achieve significant reductions of the biodiesel GHG emission rate compared to petroleum diesel.


Planta | 2007

Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks

Anja Hemschemeier; Swanny Fouchard; Laurent Cournac; Gilles Peltier; Thomas Happe

The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H2 producers. Two of the still most disputed questions regarding H2 generation by C. reinhardtii concern the electron source for H2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulosebisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H2-production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H2 also in the presence of sulfur, H2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype. The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H2 evolution.


Proteomics | 2011

Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: With focus on proteins involved in lipid metabolism

Hoa M. Nguyen; Mathieu Baudet; Stéphan Cuiné; Jean-Marc Adriano; Damien Barthe; Emmanuelle Billon; Christophe Bruley; Fred Beisson; Gilles Peltier; Myriam Ferro; Yonghua Li-Beisson

Oil bodies are sites of energy and carbon storage in many organisms including microalgae. As a step toward deciphering oil accumulation mechanisms in algae, we used proteomics to analyze purified oil bodies from the model microalga Chlamydomonas reinhardtii grown under nitrogen deprivation. Among the 248 proteins (≥2 peptides) identified by LC‐MS/MS, 33 were putatively involved in the metabolism of lipids (mostly acyl‐lipids and sterols). Compared with a recently reported Chlamydomonas oil body proteome, 19 new proteins of lipid metabolism were identified, spanning the key steps of the triacylglycerol synthesis pathway and including a glycerol‐3‐phosphate acyltransferase (GPAT), a lysophosphatidic acid acyltransferase (LPAT) and a putative phospholipid:diacylglycerol acyltransferase (PDAT). In addition, proteins putatively involved in deacylation/reacylation, sterol synthesis, lipid signaling and lipid trafficking were found to be associated with the oil body fraction. This data set thus provides evidence that Chlamydomonas oil bodies are not only storage compartments but also are dynamic structures likely to be involved in processes such as oil synthesis, degradation and lipid homeostasis. The proteins identified here should provide useful targets for genetic studies aiming at increasing our understanding of triacyglycerol synthesis and the role of oil bodies in microalgal cell functions.


Bioresource Technology | 2012

Solvent-free ultrasound-assisted extraction of lipids from fresh microalgae cells: a green, clean and scalable process.

Fanny Adam; Maryline Abert-Vian; Gilles Peltier; Farid Chemat

In order to comply with criteria of green chemistry concepts and sustainability, a new procedure has been performed for solvent-free ultrasound-assisted extraction (UAE) to extract lipids from fresh Nannochloropsis oculata biomass. Through response surface methodology (RSM) parameters affecting the oil recovery were optimized. Optimum conditions for oil extraction were estimated as follows: (i) 1000 W ultrasonic power, (ii) 30 min extraction time and (iii) biomass dry weight content at 5%. Yields were calculated by the total fatty acids methyl esters amounts analyzed by GC-FID-MS. The maximum oil recovery was around 0.21%. This value was compared with the one obtained with the conventional extraction method (Bligh and Dyer). Furthermore, effect of temperature on the yield was also investigated. The overall results show an innovative and effective extraction method adapted for microalgae oil recovery, without using solvent and with an enable scaling up.


Molecular Biology and Evolution | 2012

PredAlgo, a new subcellular localization prediction tool dedicated to green algae

Marianne Tardif; Ariane Atteia; Michael Specht; Guillaume Cogne; Norbert Rolland; Sabine Brugière; Michael Hippler; Myriam Ferro; Christophe Bruley; Gilles Peltier; Olivier Vallon; Laurent Cournac

The unicellular green alga Chlamydomonas reinhardtii is a prime model for deciphering processes occurring in the intracellular compartments of the photosynthetic cell. Organelle-specific proteomic studies have started to delineate its various subproteomes, but sequence-based prediction software is necessary to assign proteins subcellular localizations at whole genome scale. Unfortunately, existing tools are oriented toward land plants and tend to mispredict the localization of nuclear-encoded algal proteins, predicting many chloroplast proteins as mitochondrion targeted. We thus developed a new tool called PredAlgo that predicts intracellular localization of those proteins to one of three intracellular compartments in green algae: the mitochondrion, the chloroplast, and the secretory pathway. At its core, a neural network, trained using carefully curated sets of C. reinhardtii proteins, divides the N-terminal sequence into overlapping 19-residue windows and scores the probability that they belong to a cleavable targeting sequence for one of the aforementioned organelles. A targeting prediction is then deduced for the protein, and a likely cleavage site is predicted based on the shape of the scoring function along the N-terminal sequence. When assessed on an independent benchmarking set of C. reinhardtii sequences, PredAlgo showed a highly improved discrimination capacity between chloroplast- and mitochondrion-localized proteins. Its predictions matched well the results of chloroplast proteomics studies. When tested on other green algae, it gave good results with Chlorophyceae and Trebouxiophyceae but tended to underpredict mitochondrial proteins in Prasinophyceae. Approximately 18% of the nuclear-encoded C. reinhardtii proteome was predicted to be targeted to the chloroplast and 15% to the mitochondrion.


The Plant Cell | 2011

Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii

Dimitri Tolleter; Bart Ghysels; Jean Alric; Dimitris Petroutsos; Irina Tolstygina; Danuta Krawietz; Thomas Happe; Pascaline Auroy; Jean-Marc Adriano; Audrey Beyly; Stéphan Cuiné; Julie Plet; Ilja M. Reiter; Bernard Genty; Laurent Cournac; Michael Hippler; Gilles Peltier

This work describes a Chlamydomonas mutant (pgrl1) isolated from a screen designed to identify new photosynthetic regulatory mechanisms. It provides evidence that in the wild type, photosynthetic electron supply to hydrogenase is severely limited by the proton gradient generated by cyclic electron flow, opening new perspective towards optimizing hydrogen production by microalgae. Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production.


Photosynthesis Research | 2010

Auxiliary electron transport pathways in chloroplasts of microalgae

Gilles Peltier; Dimitri Tolleter; Emmanuelle Billon; Laurent Cournac

Microalgae are photosynthetic organisms which cover an extraordinary phylogenic diversity and have colonized extremely diverse habitats. Adaptation to contrasted environments in terms of light and nutrient’s availabilities has been possible through a high flexibility of the photosynthetic machinery. Indeed, optimal functioning of photosynthesis in changing environments requires a fine tuning between the conversion of light energy by photosystems and its use by metabolic reaction, a particularly important parameter being the balance between phosphorylating (ATP) and reducing (NADPH) power supplies. In addition to the main route of electrons operating during oxygenic photosynthesis, called linear electron flow or Z scheme, auxiliary routes of electron transfer in interaction with the main pathway have been described. These reactions which include non-photochemical reduction of intersystem electron carriers, cyclic electron flow around PSI, oxidation by molecular O2 of the PQ pool or of the PSI electron acceptors, participate in the flexibility of photosynthesis by avoiding over-reduction of electron carriers and modulating the NADPH/ATP ratio depending on the metabolic demand. Forward or reverse genetic approaches performed in model organisms such as Arabidopsis thaliana for higher plants, Chlamydomonas reinhardtii for green algae and Synechocystis for cyanobacteria allowed identifying molecular components involved in these auxiliary electron transport pathways, including Ndh-1, Ndh-2, PGR5, PGRL1, PTOX and flavodiiron proteins. In this article, we discuss the diversity of auxiliary routes of electron transport in microalgae, with particular focus in the presence of these components in the microalgal genomes recently sequenced. We discuss how these auxiliary mechanisms of electron transport may have contributed to the adaptation of microalgal photosynthesis to diverse and changing environments.


Plant Physiology | 2002

In Vivo Interactions between Photosynthesis, Mitorespiration, and Chlororespiration in Chlamydomonas reinhardtii

Laurent Cournac; Gwendal Latouche; Zoran Cerovic; Kevin Redding; Jacques Ravenel; Gilles Peltier

Interactions between photosynthesis, mitochondrial respiration (mitorespiration), and chlororespiration have been investigated in the green alga Chlamydomonas reinhardtiiusing flash illumination and a bare platinum electrode. Depending on the physiological status of algae, flash illumination was found to induce either a fast (t1/2 ≈ 300 ms) or slow (t1/2 ≈ 3 s) transient inhibition of oxygen uptake. Based on the effects of the mitorespiratory inhibitors myxothiazol and salicyl hydroxamic acid (SHAM), and of propyl gallate, an inhibitor of the chlororespiratory oxidase, we conclude that the fast transient is due to the flash-induced inhibition of chlororespiration and that the slow transient is due to the flash-induced inhibition of mitorespiration. By measuring blue-green fluorescence changes, related to the redox status of the pyridine nucleotide pool, and chlorophyll fluorescence, related to the redox status of plastoquinones (PQs) in C. reinhardtii wild type and in a photosystem I-deficient mutant, we show that interactions between photosynthesis and chlororespiration are favored when PQ and pyridine nucleotide pools are reduced, whereas interactions between photosynthesis and mitorespiration are favored at more oxidized states. We conclude that the plastid oxidase, similar to the mitochondrial alternative oxidase, becomes significantly engaged when the PQ pool becomes highly reduced, and thereby prevents its over-reduction.


Bioresource Technology | 2012

Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application.

G. Van Vooren; F. Le Grand; Jack Legrand; S. Cuiné; Gilles Peltier; Jérémy Pruvost

Lipids production of the marine microalga species Nannochloropsis oculata was deeply investigated by studying under continuous light the effects of different nitrogen starvation strategies in photobioreactors of various thicknesses. Operating parameters like incident photons flux density (PFD), initial nitrogen (progressive starvation strategy) or biomass concentrations (sudden starvation strategy) were examined, with a detailed analysis of their effects on the quality and production kinetics of total (TL) and triglycerides (TG). In addition to the already known effect of nitrogen starvation to trigger reserve lipids accumulation (mainly TG), it was demonstrated the relevance of the light received per cell affecting TG content and productivities, as well as fatty acids (FA) profiles. With appropriate optimization, N. oculata was confirmed as an interesting candidate for biodiesel application, with high FA accumulation (up to around 50%DW with 43%DW in TG-FA), high productivity (maximum 3.6×10(-3)kg(TG-FA)m(-2)d(-1)) and a TG-FA profile close to palm oil.


Plant and Cell Physiology | 2008

Effect of PGR5 Impairment on Photosynthesis and Growth in Arabidopsis thaliana

Yuri Munekage; Bernard Genty; Gilles Peltier

PGR5 has been reported as an important factor for the activity of the ferredoxin-dependent cyclic electron transport around PSI. To elucidate the role of PGR5 in C(3) photosynthesis, we characterized the photosynthetic electron transport rate (ETR), CO(2) assimilation and growth in the Arabidopsis thaliana pgr5 mutant at various irradiances and with CO(2) regimes. In low-light-grown pgr5, the CO(2) assimilation rate and ETR were similar to the those of the wild type at low irradiance, but decreased at saturating irradiance under photorespiratory conditions as well as non-photorespiratory conditions. Although non-photochemical quenching of chlorophyll fluorescence (NPQ) was not induced in the pgr5 mutant under steady-state photosynthesis, we show that it was induced under dark to light transition at low CO(2) concentration. Under low light conditions in air, pgr5 showed the same growth as the wild type, but a significant growth reduction compared with the wild type at >150 mumol photons m(-2) s(-1). This growth impairment was largely suppressed under high CO(2) concentrations. Based on the intercellular CO(2) concentration dependency of CO(2) assimilation, ETR and P700 oxidation measurements, we conclude that reduction of photosynthesis and growth result from (i) ATP deficiency and (ii) inactivation of PSI. We discuss these data in relation to the role of PGR5-dependent regulatory mechanisms in tuning the ATP/NADPH ratio and preventing inactivation of PSI, especially under conditions of high irradiance or enhanced photorespiration.

Collaboration


Dive into the Gilles Peltier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Beisson

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Laurent Cournac

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Xenie Johnson

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascaline Auroy

European Automobile Manufacturers Association

View shared research outputs
Top Co-Authors

Avatar

Audrey Beyly

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Bernard Genty

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Pierre Richaud

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge