Gilles San Martin
Université catholique de Louvain
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gilles San Martin.
Biological Invasions | 2016
Helen E. Roy; Peter M. Brown; Tim Adriaens; Nick Berkvens; Isabel Borges; Susana Clusella-Trullas; Richard F. Comont; Patrick De Clercq; René Eschen; Arnaud Estoup; Edward W. Evans; Benoit Facon; Mary M. Gardiner; Artur Gil; Audrey A. Grez; Thomas Guillemaud; Danny Haelewaters; Annette Herz; Alois Honek; Andy G. Howe; Cang Hui; W. D. Hutchison; Marc Kenis; Robert L. Koch; Ján Kulfan; Lori Lawson Handley; Eric Lombaert; Antoon Loomans; John E. Losey; Alexander Ok Lukashuk
The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is native to Asia but has been intentionally introduced to many countries as a biological control agent of pest insects. In numerous countries, however, it has been introduced unintentionally. The dramatic spread of H. axyridis within many countries has been met with considerable trepidation. It is a generalist top predator, able to thrive in many habitats and across wide climatic conditions. It poses a threat to biodiversity, particularly aphidophagous insects, through competition and predation, and in many countries adverse effects have been reported on other species, particularly coccinellids. However, the patterns are not consistent around the world and seem to be affected by many factors including landscape and climate. Research on H. axyridis has provided detailed insights into invasion biology from broad patterns and processes to approaches in surveillance and monitoring. An impressive number of studies on this alien species have provided mechanistic evidence alongside models explaining large-scale patterns and processes. The involvement of citizens in monitoring this species in a number of countries around the world is inspiring and has provided data on scales that would be otherwise unachievable. Harmonia axyridis has successfully been used as a model invasive alien species and has been the inspiration for global collaborations at various scales. There is considerable scope to expand the research and associated collaborations, particularly to increase the breadth of parallel studies conducted in the native and invaded regions. Indeed a qualitative comparison of biological traits across the native and invaded range suggests that there are differences which ultimately could influence the population dynamics of this invader. Here we provide an overview of the invasion history and ecology of H. axyridis globally with consideration of future research perspectives. We reflect broadly on the contributions of such research to our understanding of invasion biology while also informing policy and people.
PLOS ONE | 2014
Noa Simon-Delso; Gilles San Martin; Etienne Bruneau; Laure-Anne Minsart; Coralie Mouret; Louis Hautier
As in many other locations in the world, honeybee colony losses and disorders have increased in Belgium. Some of the symptoms observed rest unspecific and their causes remain unknown. The present study aims to determine the role of both pesticide exposure and virus load on the appraisal of unexplained honeybee colony disorders in field conditions. From July 2011 to May 2012, 330 colonies were monitored. Honeybees, wax, beebread and honey samples were collected. Morbidity and mortality information provided by beekeepers, colony clinical visits and availability of analytical matrix were used to form 2 groups: healthy colonies and colonies with disorders (n = 29, n = 25, respectively). Disorders included: (1) dead colonies or colonies in which part of the colony appeared dead, or had disappeared; (2) weak colonies; (3) queen loss; (4) problems linked to brood and not related to any known disease. Five common viruses and 99 pesticides (41 fungicides, 39 insecticides and synergist, 14 herbicides, 5 acaricides and metabolites) were quantified in the samples.The main symptoms observed in the group with disorders are linked to brood and queens. The viruses most frequently found are Black Queen Cell Virus, Sac Brood Virus, Deformed Wing Virus. No significant difference in virus load was observed between the two groups. Three acaricides, 5 insecticides and 13 fungicides were detected in the analysed samples. A significant correlation was found between the presence of fungicide residues and honeybee colony disorders. A significant positive link could also be established between the observation of disorder and the abundance of crop surface around the beehive. According to our results, the role of fungicides as a potential stressor for honeybee colonies should be further studied, either by their direct and/or indirect impacts on bees and bee colonies.
PLOS ONE | 2011
Franck A. Hollander; Hans Van Dyck; Gilles San Martin; Nicolas Titeux
In human-altered environments, organisms may preferentially settle in poor-quality habitats where fitness returns are lower relative to available higher-quality habitats. Such ecological trapping is due to a mismatch between the cues used during habitat selection and the habitat quality. Maladaptive settlement decisions may occur when organisms are time-constrained and have to rapidly evaluate habitat quality based on incomplete knowledge of the resources and conditions that will be available later in the season. During a three-year study, we examined settlement decision-making in the long-distance migratory, open-habitat bird, the Red-backed shrike (Lanius collurio), as a response to recent land-use changes. In Northwest Europe, the shrikes typically breed in open areas under a management regime of extensive farming. In recent decades, Spruce forests have been increasingly managed with large-size cutblocks in even-aged plantations, thereby producing early-successional vegetation areas that are also colonised by the species. Farmland and open areas in forests create mosaics of two different types of habitats that are now occupied by the shrikes. We examined redundant measures of habitat preference (order of settlement after migration and distribution of dominant individuals) and several reproductive performance parameters in both habitat types to investigate whether habitat preference is in line with habitat quality. Territorial males exhibited a clear preference for the recently created open areas in forests with higher-quality males settling in this habitat type earlier. Reproductive performance was, however, higher in farmland, with higher nest success, offspring quantity, and quality compared to open areas in forests. The results showed strong among-year consistency and we can therefore exclude a transient situation. This study demonstrates a case of maladaptive habitat selection in a farmland bird expanding its breeding range to human-created open habitats in plantations. We discuss the reasons that could explain this decision-making and the possible consequences for the population dynamics and persistence.
Chemoecology | 2008
Louis Hautier; Jean-Claude Grégoire; Jérôme de Schauwers; Gilles San Martin; P. Callier; Jean-Pierre Jansen; Jean-Christophe de Biseau
Summary.Under laboratory conditions, the multicolored Asian lady beetle, Harmonia axyridis is well known as an intraguild predator of other ladybirds. However the real impact of this exotic species on native species was poorly investigated in the field. Because many ladybird species produce alkaloids as defensive compounds, we propose here a new method of intraguild predation monitoring in coccinellids based on alkaloid quantification by GC-MS. In laboratory experiments, adaline was unambiguously detected in fourth instar larvae of H. axyridis having ingested one egg or one first instar larva of Adalia bipunctata. Although prey alkaloids in the predator decreased with time, traces were still detected in pupae, exuviae and imagines of H. axyridis having ingested one prey when they were fourth instar larvae. Analysis of H. axyridis larvae collected in two potato fields shows for the first time in Europe the presence of exogenous alkaloids in 9 out of 28 individuals tested. This new method of intraguild predation detection could be used more widely to follow the interactions between predators and potential chemically defended insect preys.
PLOS ONE | 2011
Ellyn Bitume; Dries Bonte; Sara Magalhães; Gilles San Martin; Stefan Van Dongen; Fabien Bach; Justin Michael Anderson; Isabelle Olivieri; Caroline Nieberding
Dispersal distance is understudied although the evolution of dispersal distance affects the distribution of genetic diversity through space. Using the two-spotted spider mite, Tetranychus urticae, we tested the conditions under which dispersal distance could evolve. To this aim, we performed artificial selection based on dispersal distance by choosing 40 individuals (out of 150) that settled furthest from the home patch (high dispersal, HDIS) and 40 individuals that remained close to the home patch (low dispersal, LDIS) with three replicates per treatment. We did not observe a response to selection nor a difference between treatments in life-history traits (fecundity, survival, longevity, and sex-ratio) after ten generations of selection. However, we show that heritability for dispersal distance depends on density. Heritability for dispersal distance was low and non-significant when using the same density as the artificial selection experiments while heritability becomes significant at a lower density. Furthermore, we show that maternal effects may have influenced the dispersal behaviour of the mites. Our results suggest primarily that selection did not work because high density and maternal effects induced phenotypic plasticity for dispersal distance. Density and maternal effects may affect the evolution of dispersal distance and should be incorporated into future theoretical and empirical studies.
Biological Invasions | 2015
Bram D’hondt; Sonia Vanderhoeven; Sophie Roelandt; François Mayer; Veerle Versteirt; Tim Adriaens; Els Ducheyne; Gilles San Martin; Jean-Claude Grégoire; Iris Stiers; Sophie Quoilin; Julien Cigar; André Heughebaert; Etienne Branquart
AbstractGiven the large number of alien species that may potentially develop into invasives, there is a clear need for robust schemes that allow to screen species for such risks. The Harmonia+ framework presented here brings together 30 questions that refer to distinct components of invasion. Together, they cover the stages of introduction, establishment, spread, and multiple kinds of impacts, viz. referring to the health of the environment (including wild species), cultivated plants, domesticated animals and man. In a complete assessment, input is provided by choosing among predefined ordinal answers and by supplementing these with textual clarification. Uncertainty is covered by indicating levels of confidence. By converting answers into scores, which are then condensed into summary statistics, Harmonia+ allows for quantitative output on stage-specific and general risks. Test assessments on five species emerging in Belgium showed the perceived environmental risks of Procambarus clarkii to be highest (0.72), and that of Threskiornis aethiopicus to be lowest (0.13). Given the considerable parallels that exist between invasive alien species and emerging infectious diseases, we additionally created Pandora, which is a risk analysis scheme for pathogens and parasites. It consists of 13 key questions and has the same structure as Harmonia+. Since diseases play a paramount role in biological invasions, results of Pandora assessments may feed into Harmonia+ through a slightly adapted, host-specific version named Pandora+. Harmonia+, Pandora and Pandora+ may be used both for prioritization purposes and for underpinning detailed risk analyses, and can be consulted online through http://ias.biodiversity.be.
Biocontrol | 2017
Marc Kenis; Tim Adriaens; Peter M. Brown; Angelos Katsanis; Gilles San Martin; Etienne Branquart; Dirk Maes; René Eschen; Renate Zindel; Johan Van Vlaenderen; Dirk Babendreier; Helen E. Roy; Louis Hautier; Remy Poland
Invasive alien predators are a serious threat to biodiversity worldwide. However, there is no generic method for assessing which local species are most at risk following the invasion of a new predator. The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an alien in Europe and many other parts of the world where it affects other species of ladybirds through competition for food and intra-guild predation (IGP). Here, we describe a method developed to assess which European ladybird species are most at risk following the invasion of H. axyridis. The three components of the risk assessment are: the likelihood that the assessed native species encounters H. axyridis in the field, the hazard of competition for food, and the IGP hazard. Thirty native European ladybird species were assessed through data obtained from field observations, laboratory experiments and literature reviews. The species that are considered most at risk are found on deciduous trees, have immature stages which are highly vulnerable to IGP by H. axyridis, and are primarily aphidophagous. These species should be the focus of specific studies and possibly conservation actions. The risk assessment method proposed here could be applied to other alien predators which are considered a threat to native species through competition and predation.
PLOS ONE | 2015
Franck A. Hollander; Hans Van Dyck; Gilles San Martin; Nicolas Titeux
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.
Scientific Reports | 2018
Caroline Nieberding; Gilles San Martin; Suzanne V. Saenko; Cerisse E. Allen; Paul M. Brakefield; Bertanne Visser
Phenotypic variation is the raw material for selection that is ubiquitous for most traits in natural populations, yet the processes underlying phenotypic evolution or stasis often remain unclear. Here, we report phenotypic evolution in a mutant line of the butterfly Bicyclus anynana after outcrossing with the genetically polymorphic wild type population. The comet mutation modifies two phenotypic traits known to be under sexual selection in this butterfly: the dorsal forewing eyespots and the pheromone-producing structures. The original comet mutant line was inbred and remained phenotypically stable for at least seven years, but when outcrossed to the wild type population the outcrossed comet line surprisingly recovered the wild type phenotype within 8 generations at high (27 °C), but not at low (20 °C), developmental temperatures. Male mating success experiments then revealed that outcrossed comet males with the typical comet phenotype suffered from lower mating success, while mating success of outcrossed comet males resembling wild types was partially restored. We document a fortuitous case where the addition of genetic polymorphism around a spontaneous mutation could have allowed partial restoration of phenotypic robustness. We further argue that sexual selection through mate choice is likely the driving force leading to phenotypic robustness in our system.
bioRxiv | 2017
Caroline Nieberding; Gilles San Martin; Suzanne V. Saenko; Cerisse E. Allen; Paul M. Brakefield; Bertanne Visser
The interaction between mutational (i.e. genetic) robustness, cryptic genetic variation and epistasis is currently under much debate, as is the question whether mutational robustness evolved under direct selection or as a by-product of environmental robustness. Here we report that mutational robustness was restored in a mutant line of the butterfly Bicyclus anynana after the spontaneous mutation, comet, appeared in a genetically polymorphic wild type population. The comet mutation modified two phenotypic traits known to be under sexual selection in this butterfly: the dorsal forewing eyespot, which is normally round, but became ‘comet’-shaped, and the androconia, the structures producing the male sex pheromone, which were reduced in size. The comet mutant line remained phenotypically stable for ∼7 seven years, but when outcrossed to the genetically polymorphic wild type population, the outcrossed comet line surprisingly recovered the wild type phenotype within 8 generations. This suggests that mutational robustness against the comet mutation was recovered in the comet outcrossed line by epistatic interactions with the genetic polymorphism originating from wild types. The extent of wild type phenotype recovery in the comet outcrossed line was trait- and developmental temperature-dependent, such that mutational robustness was partially recovered at high, but not at low developmental temperatures. We hypothesized that sexual selection through mate choice, which is sex-reversed between developmental temperatures in this butterfly, could produce mutational robustness at a high (but not at a low) temperature. Females are the choosy sex and exert stabilizing or directional selection on male secondary sexual wing traits but only at higher temperatures. Male mating success experiments under semi-natural conditions then revealed that males with the typical comet mutant phenotype suffered from lower mating success compared to wild type males, while mating success of comet males resembling wild types was partially restored. Altogether, we document the roles of cryptic genetic variation and epistasis in restoration of mutational robustness against a spontaneous mutation with known fitness effects, and we provide experimental evidence, for the first time to our knowledge, that sexual selection can produce mutational robustness.