Gilles Travé
École Normale Supérieure
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gilles Travé.
Frontiers in Bioscience | 2008
Francesca Diella; Niall J. Haslam; Claudia Chica; Aidan Budd; Sushama Michael; Nigel P. Brown; Gilles Travé; Toby; J. Gibson
It is now clear that a detailed picture of cell regulation requires a comprehensive understanding of the abundant short protein motifs through which signaling is channeled. The current body of knowledge has slowly accumulated through piecemeal experimental investigation of individual motifs in signaling. Computational methods contributed little to this process. A new generation of bioinformatics tools will aid the future investigation of motifs in regulatory proteins, and the disordered polypeptide regions in which they frequently reside. Allied to high throughput methods such as phosphoproteomics, signaling networks are becoming amenable to experimental deconstruction. In this review, we summarise the current state of linear motif biology, which uses low affinity interactions to create cooperative, combinatorial and highly dynamic regulatory protein complexes. The discrete deterministic properties implicit to these assemblies suggest that models for cell regulatory networks in systems biology should neither be overly dependent on stochastic nor on smooth deterministic approximations.
Nucleic Acids Research | 2010
Cathryn M. Gould; Francesca Diella; Allegra Via; Pål Puntervoll; Christine Gemünd; Sophie Chabanis-Davidson; Sushama Michael; Ahmed Sayadi; Jan Christian Bryne; Claudia Chica; Markus Seiler; Norman E. Davey; Niall J. Haslam; Robert J. Weatheritt; Aidan Budd; Timothy P. Hughes; Jakub Paś; Leszek Rychlewski; Gilles Travé; Rein Aasland; Manuela Helmer-Citterich; Rune Linding; Toby J. Gibson
Linear motifs are short segments of multidomain proteins that provide regulatory functions independently of protein tertiary structure. Much of intracellular signalling passes through protein modifications at linear motifs. Many thousands of linear motif instances, most notably phosphorylation sites, have now been reported. Although clearly very abundant, linear motifs are difficult to predict de novo in protein sequences due to the difficulty of obtaining robust statistical assessments. The ELM resource at http://elm.eu.org/ provides an expanding knowledge base, currently covering 146 known motifs, with annotation that includes >1300 experimentally reported instances. ELM is also an exploratory tool for suggesting new candidates of known linear motifs in proteins of interest. Information about protein domains, protein structure and native disorder, cellular and taxonomic contexts is used to reduce or deprecate false positive matches. Results are graphically displayed in a ‘Bar Code’ format, which also displays known instances from homologous proteins through a novel ‘Instance Mapper’ protocol based on PHI-BLAST. ELM server output provides links to the ELM annotation as well as to a number of remote resources. Using the links, researchers can explore the motifs, proteins, complex structures and associated literature to evaluate whether candidate motifs might be worth experimental investigation.
Science | 2013
Katia Zanier; Sebastian Charbonnier; Abdellahi ould M’hamed ould Sidi; Alastair G. McEwen; Maria Giovanna Ferrario; Pierre Poussin-Courmontagne; Vincent Cura; Nicole Brimer; Khaled Ould Babah; Tina Ansari; Isabelle Muller; Roland H. Stote; Jean Cavarelli; Scott Vande Pol; Gilles Travé
Targeting HPV Papillomaviruses infect mammalian epithelial cells and induce cancers, including cervical cancer in humans. Vaccines against human papillomavirus (HPV) can prevent, but not cure, infection. A key viral oncoprotein, E6, acts by binding and inactivating many host proteins. Zanier et al. (p. 694) determined high-resolution crystal structures of bovine papillomavirus bound to a peptide from the focal adhesion protein, paxillin, and of HPV bound to a peptide from the ubiquitin ligase E6AP. The structures show that the peptide binds in a pocket formed by two zinc domains and a linker helix, which represents a promising target for therapeutics. Crystal structures show how a key oncoprotein in human papillomavirus binds host proteins. E6 viral oncoproteins are key players in epithelial tumors induced by papillomaviruses in vertebrates, including cervical cancer in humans. E6 proteins target many host proteins by specifically interacting with acidic LxxLL motifs. We solved the crystal structures of bovine (BPV1) and human (HPV16) papillomavirus E6 proteins bound to LxxLL peptides from the focal adhesion protein paxillin and the ubiquitin ligase E6AP, respectively. In both E6 proteins, two zinc domains and a linker helix form a basic-hydrophobic pocket, which captures helical LxxLL motifs in a way compatible with other interaction modes. Mutational inactivation of the LxxLL binding pocket disrupts the oncogenic activities of both E6 proteins. This work reveals the structural basis of both the multifunctionality and the oncogenicity of E6 proteins.
The EMBO Journal | 1995
Gilles Travé; Pj Lacombe; Mark Pfuhl; Matti Saraste; Annalisa Pastore
Calcium is a universally employed cytosolic messenger in eukaryotic cells. Most of the proteins that bind signalling calcium are members of the calmodulin superfamily and share two or more helix‐loop‐helix motifs known as EF‐hands. A model, based on structure comparison of different domains and supported by preliminary NMR data, has suggested that EF‐hands involved in signal transduction undergo a major conformational change upon calcium binding from a ‘closed’ to an ‘open’ state allowing protein‐protein interaction. We have determined the solution structures of the EF‐hand pair from alpha‐spectrin in the absence and in the presence of calcium. The structures are in the closed and open conformation respectively, providing a definite experimental proof for the closed‐to‐open model. Our results allow formulation of the rules which govern the movement induced by calcium. These rules may be generalized to other EF‐hands since the key residues involved are conserved within the calmodulin family.
FEBS Letters | 2012
Katja Luck; Sebastian Charbonnier; Gilles Travé
The canonical binding mode of PDZ domains to target motifs involves a small interface, unlikely to fully account for PDZ‐target interaction specificities. Here, we review recent work on sequence context, defined as the regions surrounding not only the PDZ domains but also their target motifs. We also address the theoretical problem of defining the core of PDZ domains and the practical issue of designing PDZ constructs. Sequence context is found to introduce structural diversity, to impact the stability and solubility of constructs, and to deeply influence binding affinity and specificity, thereby increasing the difficulty of predicting PDZ‐motif interactions. We expect that sequence context will have similar importance for other protein interactions mediated by globular domains binding to short linear motifs.
Nature | 2016
Denise Martinez-Zapien; Francesc X. Ruiz; Juline Poirson; Andre Mitschler; Juan David Ramírez; Anne Forster; Alexandra Cousido-Siah; Murielle Masson; Scott Vande Pol; Alberto Podjarny; Gilles Travé; Katia Zanier
The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by ‘high-risk’ mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6–p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.
Journal of Molecular Recognition | 1999
Christine Giovane; Gilles Travé; Amélie Briones; Yves Lutz; Bohdan Wasylyk; Etienne Weiss
The E6 protein of cancer‐associated human papillomavirus type 16 (HPV16) binds to cellular p53 and promotes its degradation through the ubiquitin pathway. In an attempt to identify the regions of E6 that could be targetted for functional inhibition, we generated monoclonal antibodies to the HPV16 E6 oncoprotein (16E6) and analysed their effect on E6‐mediated p53 in vitro degradation. The isolated antibodies recognize the 16E6 oncoprotein expressed in the CaSki carcinoma cell line and strongly inhibit the proteolysis of p53 in vitro by binding specifically to a region of 10 residues located at the N‐terminal end of 16E6. The variable regions of these antibodies were cloned and expressed in E. coli as single chain Fvs (scFvs). Purified scFvs were present in monomeric form and totally abolished 16E6‐mediated p53 degradation by preventing the formation of E6/p53 protein complexes. Our results demonstrate that monovalent binding of scFvs to the N‐terminal end of 16E6 abrogates the biological mechanisms leading to the degradation of p53, and they suggest that this region of 16E6 may be a useful in vivo target for blocking the oncogenic activity of HPV16 E6 protein. Copyright
PLOS ONE | 2011
Katja Luck; Sadek Fournane; Bruno Kieffer; Murielle Masson; Yves Nominé; Gilles Travé
PDZ domains recognise short sequence motifs at the extreme C-termini of proteins. A model based on microarray data has been recently published for predicting the binding preferences of PDZ domains to five residue long C-terminal sequences. Here we investigated the potential of this predictor for discovering novel protein interactions that involve PDZ domains. When tested on real negative data assembled from published literature, the predictor displayed a high false positive rate (FPR). We predicted and experimentally validated interactions between four PDZ domains derived from the human proteins MAGI1 and SCRIB and 19 peptides derived from human and viral C-termini of proteins. Measured binding intensities did not correlate with prediction scores, and the high FPR of the predictor was confirmed. Results indicate that limitations of the predictor may arise from an incomplete model definition and improper training of the model. Taking into account these limitations, we identified several novel putative interactions between PDZ domains of MAGI1 and SCRIB and the C-termini of the proteins FZD4, ARHGAP6, NET1, TANC1, GLUT7, MARCH3, MAS, ABC1, DLL1, TMEM215 and CYSLTR2. These proteins are localised to the membrane or suggested to act close to it and are often involved in G protein signalling. Furthermore, we showed that, while extension of minimal interacting domains or peptides toward tandem constructs or longer peptides never suppressed their ability to interact, the measured affinities and inferred specificity patterns often changed significantly. This suggests that if protein fragments interact, the full length proteins are also likely to interact, albeit possibly with altered affinities and specificities. Therefore, predictors dealing with protein fragments are promising tools for discovering protein interaction networks but their application to predict binding preferences within networks may be limited.
Oncogene | 2009
Tutik Ristriani; Sadek Fournane; Georges Orfanoudakis; Gilles Travé; Murielle Masson
High-risk mucosal human papillomaviruses (HPV), mainly HPV16 and HPV18, are implicated in cervical carcinogenesis. HPV16 E6 oncoprotein binds and often targets for degradation numerous cell proteins, including the tumor suppressor p53 and several PDZ domain proteins. Here, we show that a single-point mutation, F47R, is sufficient to convert the HPV16 E6 oncoprotein into a suppressor of HPV-positive HeLa cervical cancer cells proliferation. The E6 F47R mutant is defective for polyubiquitination and subsequent degradation of p53. When expressed in HPV-positive cervical cancer cells, E6 F47R acts as a dominant negative mutant by counteracting the p53 degradation activity of endogenous E6 and restoring high p53 protein levels. Moreover, the prolonged expression of E6 F47R leads to suppression of HeLa cells proliferation through the induction of premature senescence. This phenotype is independent on the PDZ-binding activity of E6. F47R-senescent HeLa cells exhibit a sustained expression of p53, hMDM2 and p21CIP proteins and a reduced expression of endogenous HPV18 E6 protein. Finally, small interfering RNAs directed against p53 counteract the effect of E6 F47R expression, indicating that E6 F47R-induced cellular senescence is strongly dependent on p53 signaling pathway.
Journal of Molecular Recognition | 2011
Sadek Fournane; Sebastian Charbonnier; Anne Chapelle; Bruno Kieffer; Georges Orfanoudakis; Gilles Travé; Murielle Masson; Yves Nominé
The E6 oncoproteins from high‐risk mucosal human papillomavirus (HPV) induce cervical cancer via two major activities, the binding and the degradation of the p53 protein and PDZ domain‐containing proteins. Human MAGI‐1 is a multi‐PDZ domain protein implicated into protein complex assembly at cell–cell contacts. High‐risk mucosal HPV E6 proteins interact with the PDZ1 domain of MAGI‐1 via a C‐terminal consensus binding motif. Here, we developed a medium throughput protocol to accurately measure by surface plasmon resonance affinity constants of protein domains binding to peptidic sequences produced as recombinant fusions to the glutathione‐S‐transferase (GST). This approach was applied to measure the binding of MAGI‐1 PDZ1 to the C‐termini of viral or cellular proteins. Both high‐risk mucosal HPV E6 C‐terminal peptides and cellular partners of MAGI‐1 PDZ1 bind to MAGI‐1 PDZ1 with comparable dissociation constants in the micromolar range. MAGI‐1 PDZ1 shows a preference for C‐termini with a valine at position 0 and a negative charge at position −3, confirming previous studies performed with HPV18 E6. A detailed combined analysis via site‐directed mutagenesis of the HPV16 C‐terminal peptide and PDZ1 indicated that interactions mediated by charged residues upstream the PDZ‐binding motif strongly contribute to binding selectivity of this interaction. In addition, our work highlighted the K499 residue of MAGI‐1 as a novel determinant of binding specificity. Finally, we showed that MAGI‐1 PDZ1 also binds to the C‐termini of LPP and Tax proteins, which were already known to bind to PDZ proteins but not to MAGI‐1. Copyright