Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gilles Vandewalle is active.

Publication


Featured researches published by Gilles Vandewalle.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep

Manuel Schabus; Thien Thanh Dang-Vu; Geneviève Albouy; Evelyne Balteau; Mélanie Boly; Julie Carrier; Annabelle Darsaud; Christian Degueldre; Martin Desseilles; S. Gais; Christophe Phillips; Géraldine Rauchs; Caroline Schnakers; Virginie Sterpenich; Gilles Vandewalle; André Luxen; Pierre Maquet

In humans, some evidence suggests that there are two different types of spindles during sleep, which differ by their scalp topography and possibly some aspects of their regulation. To test for the existence of two different spindle types, we characterized the activity associated with slow (11–13 Hz) and fast (13–15 Hz) spindles, identified as discrete events during non-rapid eye movement sleep, in non-sleep-deprived human volunteers, using simultaneous electroencephalography and functional MRI. An activation pattern common to both spindle types involved the thalami, paralimbic areas (anterior cingulate and insular cortices), and superior temporal gyri. No thalamic difference was detected in the direct comparison between slow and fast spindles although some thalamic areas were preferentially activated in relation to either spindle type. Beyond the common activation pattern, the increases in cortical activity differed significantly between the two spindle types. Slow spindles were associated with increased activity in the superior frontal gyrus. In contrast, fast spindles recruited a set of cortical regions involved in sensorimotor processing, as well as the mesial frontal cortex and hippocampus. The recruitment of partially segregated cortical networks for slow and fast spindles further supports the existence of two spindle types during human non-rapid eye movement sleep, with potentially different functional significance.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Sleep transforms the cerebral trace of declarative memories

Steffen Gais; Geneviève Albouy; Mélanie Boly; Thien Thanh Dang-Vu; Annabelle Darsaud; Martin Desseilles; Géraldine Rauchs; Manuel Schabus; Virginie Sterpenich; Gilles Vandewalle; Pierre Maquet; Philippe Peigneux

After encoding, memory traces are initially fragile and have to be reinforced to become permanent. The initial steps of this process occur at a cellular level within minutes or hours. Besides this rapid synaptic consolidation, systems consolidation occurs within a time frame of days to years. For declarative memory, the latter is presumed to rely on an interaction between different brain regions, in particular the hippocampus and the medial prefrontal cortex (mPFC). Specifically, sleep has been proposed to provide a setting that supports such systems consolidation processes, leading to a transfer and perhaps transformation of memories. Using functional MRI, we show that postlearning sleep enhances hippocampal responses during recall of word pairs 48 h after learning, indicating intrahippocampal memory processing during sleep. At the same time, sleep induces a memory-related functional connectivity between the hippocampus and the mPFC. Six months after learning, memories activated the mPFC more strongly when they were encoded before sleep, showing that sleep leads to long-lasting changes in the representation of memories on a systems level.


Neuron | 2008

Both the Hippocampus and Striatum Are Involved in Consolidation of Motor Sequence Memory

Geneviève Albouy; Virginie Sterpenich; Evelyne Balteau; Gilles Vandewalle; Martin Desseilles; Thanh Dang-Vu; Annabelle Darsaud; Perrine Ruby; Pierre-Hervé Luppi; Christian Degueldre; Philippe Peigneux; André Luxen; Pierre Maquet

Functional magnetic resonance imaging (fMRI) was used to investigate the cerebral correlates of motor sequence memory consolidation. Participants were scanned while training on an implicit oculomotor sequence learning task and during a single testing session taking place 30 min, 5 hr, or 24 hr later. During training, responses observed in hippocampus and striatum were linearly related to the gain in performance observed overnight, but not over the day. Responses in both structures were significantly larger at 24 hr than at 30 min or 5 hr. Additionally, the competitive interaction observed between these structures during training became cooperative overnight. These results stress the importance of both hippocampus and striatum in procedural memory consolidation. Responses in these areas during training seem to condition the overnight memory processing that is associated with a change in their functional interactions. These results show that both structures interact during motor sequence consolidation to optimize subsequent behavior.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Spontaneous neural activity during human slow wave sleep.

Thien Thanh Dang-Vu; Manuel Schabus; Martin Desseilles; Geneviève Albouy; Mélanie Boly; Annabelle Darsaud; Steffen Gais; Géraldine Rauchs; Virginie Sterpenich; Gilles Vandewalle; Julie Carrier; Gustave Moonen; Evelyne Balteau; Christian Degueldre; André Luxen; Christophe Phillips; Pierre Maquet

Slow wave sleep (SWS) is associated with spontaneous brain oscillations that are thought to participate in sleep homeostasis and to support the processing of information related to the experiences of the previous awake period. At the cellular level, during SWS, a slow oscillation (<1 Hz) synchronizes firing patterns in large neuronal populations and is reflected on electroencephalography (EEG) recordings as large-amplitude, low-frequency waves. By using simultaneous EEG and event-related functional magnetic resonance imaging (fMRI), we characterized the transient changes in brain activity consistently associated with slow waves (>140 μV) and delta waves (75–140 μV) during SWS in 14 non-sleep-deprived normal human volunteers. Significant increases in activity were associated with these waves in several cortical areas, including the inferior frontal, medial prefrontal, precuneus, and posterior cingulate areas. Compared with baseline activity, slow waves are associated with significant activity in the parahippocampal gyrus, cerebellum, and brainstem, whereas delta waves are related to frontal responses. No decrease in activity was observed. This study demonstrates that SWS is not a state of brain quiescence, but rather is an active state during which brain activity is consistently synchronized to the slow oscillation in specific cerebral regions. The partial overlap between the response pattern related to SWS waves and the waking default mode network is consistent with the fascinating hypothesis that brain responses synchronized by the slow oscillation restore microwake-like activity patterns that facilitate neuronal interactions.


Trends in Cognitive Sciences | 2009

Light as a modulator of cognitive brain function

Gilles Vandewalle; Pierre Maquet; Derk-Jan Dijk

Humans are a diurnal species usually exposed to light while engaged in cognitive tasks. Light not only guides performance on these tasks through vision but also exerts non-visual effects that are mediated in part by recently discovered retinal ganglion cells maximally sensitive to blue light. We review recent neuroimaging studies which demonstrate that the wavelength, duration and intensity of light exposure modulate brain responses to (non-visual) cognitive tasks. These responses to light are initially observed in alertness-related subcortical structures (hypothalamus, brainstem, thalamus) and limbic areas (amygdala and hippocampus), followed by modulations of activity in cortical areas, which can ultimately affect behaviour. Light emerges as an important modulator of brain function and cognition.


PLOS Biology | 2007

Sleep-Related Hippocampo-Cortical Interplay during Emotional Memory Recollection

Virginie Sterpenich; Geneviève Albouy; Mélanie Boly; Gilles Vandewalle; Annabelle Darsaud; Evelyne Balteau; Thien Thanh Dang-Vu; Martin Desseilles; Arnaud D'Argembeau; Steffen Gais; Géraldine Rauchs; Manuel Schabus; Christian Degueldre; André Luxen; Fabienne Collette; Pierre Maquet

Emotional events are usually better remembered than neutral ones. This effect is mediated in part by a modulation of the hippocampus by the amygdala. Sleep plays a role in the consolidation of declarative memory. We examined the impact of sleep and lack of sleep on the consolidation of emotional (negative and positive) memories at the macroscopic systems level. Using functional MRI (fMRI), we compared the neural correlates of successful recollection by humans of emotional and neutral stimuli, 72 h after encoding, with or without total sleep deprivation during the first post-encoding night. In contrast to recollection of neutral and positive stimuli, which was deteriorated by sleep deprivation, similar recollection levels were achieved for negative stimuli in both groups. Successful recollection of emotional stimuli elicited larger responses in the hippocampus and various cortical areas, including the medial prefrontal cortex, in the sleep group than in the sleep deprived group. This effect was consistent across subjects for negative items but depended linearly on individual memory performance for positive items. In addition, the hippocampus and medial prefrontal cortex were functionally more connected during recollection of either negative or positive than neutral items, and more so in sleeping than in sleep-deprived subjects. In the sleep-deprived group, recollection of negative items elicited larger responses in the amygdala and an occipital area than in the sleep group. In contrast, no such difference in brain responses between groups was associated with recollection of positive stimuli. The results suggest that the emotional significance of memories influences their sleep-dependent systems-level consolidation. The recruitment of hippocampo-neocortical networks during recollection is enhanced after sleep and is hindered by sleep deprivation. After sleep deprivation, recollection of negative, potentially dangerous, memories recruits an alternate amygdalo-cortical network, which would keep track of emotional information despite sleep deprivation.


Current Biology | 2006

Daytime Light Exposure Dynamically Enhances Brain Responses

Gilles Vandewalle; Evelyne Balteau; Christophe Phillips; Christian Degueldre; Vincent Moreau; Virginie Sterpenich; Geneviève Albouy; Annabelle Darsaud; Martin Desseilles; Thien Thanh Dang-Vu; Philippe Peigneux; André Luxen; Derk-Jan Dijk; Pierre Maquet

In humans, light enhances both alertness and performance during nighttime and daytime [1-4] and influences regional brain function [5]. These effects do not correspond to classical visual responses but involve a non-image forming (NIF) system, which elicits greater endocrine, physiological, neurophysiological, and behavioral responses to shorter light wavelengths than to wavelengths geared toward the visual system [6-11]. During daytime, the neural changes induced by light exposure, and their time courses, are largely unknown. With functional magnetic resonance imaging (fMRI), we characterized the neural correlates of the alerting effect of daytime light by assessing the responses to an auditory oddball task [12-15], before and after a short exposure to a bright white light. Light-induced improvement in subjective alertness was linearly related to responses in the posterior thalamus. In addition, light enhanced responses in a set of cortical areas supporting attentional oddball effects, and it prevented decreases of activity otherwise observed during continuous darkness. Responses to light were remarkably dynamic. They declined within minutes after the end of the light stimulus, following various region-specific time courses. These findings suggest that light can modulate activity of subcortical structures involved in alertness, thereby dynamically promoting cortical activity in networks involved in ongoing nonvisual cognitive processes.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Functional specialization for auditory–spatial processing in the occipital cortex of congenitally blind humans

Olivier Collignon; Gilles Vandewalle; Patrice Voss; Geneviève Albouy; Geneviève Charbonneau; Maryse Lassonde; Franco Lepore

The study of the congenitally blind (CB) represents a unique opportunity to explore experience-dependant plasticity in a sensory region deprived of its natural inputs since birth. Although several studies have shown occipital regions of CB to be involved in nonvisual processing, whether the functional organization of the visual cortex observed in sighted individuals (SI) is maintained in the rewired occipital regions of the blind has only been recently investigated. In the present functional MRI study, we compared the brain activity of CB and SI processing either the spatial or the pitch properties of sounds carrying information in both domains (i.e., the same sounds were used in both tasks), using an adaptive procedure specifically designed to adjust for performance level. In addition to showing a substantial recruitment of the occipital cortex for sound processing in CB, we also demonstrate that auditory–spatial processing mainly recruits the right cuneus and the right middle occipital gyrus, two regions of the dorsal occipital stream known to be involved in visuospatial/motion processing in SI. Moreover, functional connectivity analyses revealed that these reorganized occipital regions are part of an extensive brain network including regions known to underlie audiovisual spatial abilities (i.e., intraparietal sulcus, superior frontal gyrus). We conclude that some regions of the right dorsal occipital stream do not require visual experience to develop a specialization for the processing of spatial information and to be functionally integrated in a preexisting brain network dedicated to this ability.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Brain plasticity related to the consolidation of motor sequence learning and motor adaptation

Karen Debas; Julie Carrier; Pierre Orban; Marc Barakat; Ovidiu Lungu; Gilles Vandewalle; Abdallah Hadj Tahar; Pierre Bellec; Avi Karni; Leslie G. Ungerleider; Habib Benali; Julien Doyon

This study aimed to investigate, through functional MRI (fMRI), the neuronal substrates associated with the consolidation process of two motor skills: motor sequence learning (MSL) and motor adaptation (MA). Four groups of young healthy individuals were assigned to either (i) a night/sleep condition, in which they were scanned while practicing a finger sequence learning task or an eight-target adaptation pointing task in the evening (test) and were scanned again 12 h later in the morning (retest) or (ii) a day/awake condition, in which they were scanned on the MSL or the MA tasks in the morning and were rescanned 12 h later in the evening. As expected and consistent with the behavioral results, the functional data revealed increased test–retest changes of activity in the striatum for the night/sleep group compared with the day/awake group in the MSL task. By contrast, the results of the MA task did not show any difference in test–retest activity between the night/sleep and day/awake groups. When the two MA task groups were combined, however, increased test–retest activity was found in lobule VI of the cerebellar cortex. Together, these findings highlight the presence of both functional and structural dissociations reflecting the off-line consolidation processes of MSL and MA. They suggest that MSL consolidation is sleep dependent and reflected by a differential increase of neural activity within the corticostriatal system, whereas MA consolidation necessitates either a period of daytime or sleep and is associated with increased neuronal activity within the corticocerebellar system.


The Journal of Neuroscience | 2006

The Locus Ceruleus Is Involved in the Successful Retrieval of Emotional Memories in Humans

Virginie Sterpenich; Arnaud D'Argembeau; Martin Desseilles; Evelyne Balteau; Geneviève Albouy; Gilles Vandewalle; Christian Degueldre; André Luxen; Fabienne Collette; Pierre Maquet

Emotional memories are better remembered than neutral ones. The amygdala is involved in this enhancement not only by modulating the hippocampal activity, but possibly also by modulating central arousal. Using functional magnetic resonance imaging, we analyzed the retrieval of neutral faces encoded in emotional or neutral contexts. The pupillary size measured during encoding was used as a modulator of brain responses during retrieval. The interaction between emotion and memory showed significant responses in a set of areas, including the amygdala and parahippocampal gyrus. These areas responded significantly more for correctly remembered faces encoded in an emotional, compared with neutral, context. The same interaction conducted on responses modulated by the pupillary size revealed an area of the dorsal tegmentum of the ponto-mesencephalic region, consistent with the locus ceruleus. Moreover, a psychophysiological interaction showed that amygdalar responses were more tightly related to those of the locus ceruleus when remembering faces that had been encoded in an emotional, rather than neutral, context. These findings suggest that the restoration of a central arousal similar to encoding takes part in the successful retrieval of neutral events learned in an emotional context.

Collaboration


Dive into the Gilles Vandewalle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geneviève Albouy

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge