Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gillian Greig is active.

Publication


Featured researches published by Gillian Greig.


British Journal of Pharmacology | 1997

Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor

Denis Riendeau; M.D Percival; Susan Boyce; Christine Brideau; S. Charleson; Wanda Cromlish; Diane Ethier; Jilly F. Evans; Jean-Pierre Falgueyret; Anthony W. Ford-Hutchinson; Robert Gordon; Gillian Greig; M Gresser; Jocelyne Guay; Stacia Kargman; Serge Leger; Joseph A. Mancini; Gary P. O'Neill; Marc Ouellet; Ian W. Rodger; Michel Therien; Zhaoyin Wang; J.K. Webb; E.H.F. Wong; Lijing Xu; Robert N. Young; Robert Zamboni; Petpiboon Prasit; Chi-Chung Chan

DFU (5,5‐dimethyl‐3‐(3‐fluorophenyl)‐4‐(4‐methylsulphonyl)phenyl‐2(5H)‐furanone) was identified as a novel orally active and highly selective cyclo‐oxygenase‐2 (COX‐2) inhibitor. In CHO cells stably transfected with human COX isozymes, DFU inhibited the arachidonic acid‐dependent production of prostaglandin E2 (PGE2) with at least a 1,000 fold selectivity for COX‐2 (IC50=41±14 nM) over COX‐1 (IC50>50 μM). Indomethacin was a potent inhibitor of both COX‐1 (IC50=18±3 nM) and COX‐2 (IC50=26±6 nM) under the same assay conditions. The large increase in selectivity of DFU over indomethacin was also observed in COX‐1 mediated production of thromboxane B2 (TXB2) by Ca2+ ionophore‐challenged human platelets (IC50>50 μM and 4.1±1.7 nM, respectively). DFU caused a time‐dependent inhibition of purified recombinant human COX‐2 with a Ki value of 140±68 μM for the initial reversible binding to enzyme and a k2 value of 0.11±0.06 s−1 for the first order rate constant for formation of a tightly bound enzyme‐inhibitor complex. Comparable values of 62±26 μM and 0.06±0.01 s−1, respectively, were obtained for indomethacin. The enzyme‐inhibitor complex was found to have a 1 : 1 stoichiometry and to dissociate only very slowly (t1/2=1–3 h) with recovery of intact inhibitor and active enzyme. The time‐dependent inhibition by DFU was decreased by co‐incubation with arachidonic acid under non‐turnover conditions, consistent with reversible competitive inhibition at the COX active site. Inhibition of purified recombinant human COX‐1 by DFU was very weak and observed only at low concentrations of substrate (IC50=63±5 μM at 0.1 μM arachidonic acid). In contrast to COX‐2, inhibition was time‐independent and rapidly reversible. These data are consistent with a reversible competitive inhibition of COX‐1. DFU inhibited lipopolysaccharide (LPS)‐induced PGE2 production (COX‐2) in a human whole blood assay with a potency (IC50=0.28±0.04 μM) similar to indomethacin (IC50=0.68±0.17 μM). In contrast, DFU was at least 500 times less potent (IC50>97 μM) than indomethacin at inhibiting coagulation‐induced TXB2 production (COX‐1) (IC50=0.19±0.02 μM). In a sensitive assay with U937 cell microsomes at a low arachidonic acid concentration (0.1 μM), DFU inhibited COX‐1 with an IC50 value of 13±2 μM as compared to 20±1 nM for indomethacin. CGP 28238, etodolac and SC‐58125 were about 10 times more potent inhibitors of COX‐1 than DFU. The order of potency of various inhibitors was diclofenac>indomethacin∼naproxen>nimesulide∼ meloxicam∼piroxicam>NS‐398∼SC‐57666>SC‐58125>CGP 28238∼etodolac>L‐745,337>DFU. DFU inhibited dose‐dependently both the carrageenan‐induced rat paw oedema (ED50 of 1.1 mg kg−1 vs 2.0 mg kg−1 for indomethacin) and hyperalgesia (ED50 of 0.95 mg kg−1 vs 1.5 mg kg−1 for indomethacin). The compound was also effective at reversing LPS‐induced pyrexia in rats (ED50=0.76 mg kg−1 vs 1.1 mg kg−1 for indomethacin). In a sensitive model in which 51Cr faecal excretion was used to assess the integrity of the gastrointestinal tract in rats, no significant effect was detected after oral administration of DFU (100 mg kg−1, b.i.d.) for 5 days, whereas chromium leakage was observed with lower doses of diclofenac (3 mg kg−1), meloxicam (3 mg kg−1) or etodolac (10–30 mg kg−1). A 5 day administration of DFU in squirrel monkeys (100 mg kg−1) did not affect chromium leakage in contrast to diclofenac (1 mg kg−1) or naproxen (5 mg kg−1). The results indicate that COX‐1 inhibitory effects can be detected for all selective COX‐2 inhibitors tested by use of a sensitive assay at low substrate concentration. The novel inhibitor DFU shows the lowest inhibitory potency against COX‐1, a consistent high selectivity of inhibition of COX‐2 over COX‐1 (>300 fold) with enzyme, whole cell and whole blood assays, with no detectable loss of integrity of the gastrointestinal tract at doses >200 fold higher than efficacious doses in models of inflammation, pyresis and hyperalgesia. These results provide further evidence that prostanoids derived from COX‐1 activity are not important in acute inflammatory responses and that a high therapeutic index of anti‐inflammatory effect to gastropathy can be achieved with a selective COX‐2 inhibitor.


Bioorganic & Medicinal Chemistry Letters | 1998

2-Pyridinyl-3-(4-methylsulfonyl)phenylpyridines: Selective and orally active cyclooxygenase-2 inhibitors

Richard W. Friesen; Christine Brideau; Chi-Chung Chan; S. Charleson; Denis Deschenes; Daniel Dube; Diane Ethier; Rejean Fortin; Jacques Yves Gauthier; Yves Girard; Robert Gordon; Gillian Greig; Denis Riendeau; Chantal Savoie; Zhaoyin Wang; Elizabeth Wong; Denise M. Visco; Li Jing Xu; Robert N. Young

A series of novel 2-pyridinyl-3-(4-methylsulfonyl)phenylpyridines has been synthesized and evaluated with respect to their ability to inhibit the isozymes of cyclooxygenase, COX-1, and COX-2. Optimum COX-2 activity is observed by introduction of a substituent at C5 of the central pyridine. 5- Chloro-3-(4-methylsulfonyl)phenyl-2-(2-methyl-5-pyridinyl)pyridine 33 was identified as the optimum compound in this series.


Biochemical Pharmacology | 1996

Mechanism of selective inhibition of human prostaglandin G/H synthase-1 and -2 in intact cells.

Stacia Kargman; Elizabeth Wong; Gillian Greig; Jean-Pierre Falgueyret; Wanda Cromlish; Diane Ethier; Jim Yergey; Denis Riendeau; Jilly F. Evans; Brian P. Kennedy; Philip Tagari; Donna A. Francis; Gary P. O'Neill

Selective inhibitors of prostaglandin synthase-2 (PGHS-2) possess potent anti-inflammatory, antipyretic, and analgesic properties but demonstrate reduced side-effects (e.g. gastrotoxicity) when compared with nonselective inhibitors of PGHS-1 and -2. We investigated the mechanism of the differential inhibition of human PGHS-1 (hPGHS-1) and -2 (hPGHS-2) in intact cells by nonsteroidal anti-inflammatory drugs (NSAIDs) and examined factors that contribute to the increased potency of PGHS inhibitors observed in intact cells versus cell-free systems. In intact Chinese hamster ovary (CHO) cell lines stably expressing the hPGHS isozymes, both PGHS isoforms exhibited the same affinity for arachidonic acid. Exogenous and endogenous arachidonic acid were used as substrates by both CHO [hPGHS-1] and CHO [hPGHS-2] cell lines. However, differences were observed in the ability of the hPGHS isoforms to utilize endogenous arachidonic acid released intracellularly following calcium ionophore stimulation or released by human cytosolic phospholipase A2 transiently expressed in the cells. Cell-based screening of PGHS inhibitors demonstrated that the selectivities and potencies of PGHS inhibitors determined using intact cells are affected by substrate concentration and differ from that determined in cell-free microsomal or purified enzyme preparations of PGHS isozymes. The mechanism of inhibition of PGHS isozymes by NSAIDs in intact cells involved difference in their time-dependent inhibition. Indomethacin displayed time-dependent inhibition of cellular hPGHS-1 and -2. In contrast, the selective PGHS-2 inhibitor NS-398 exhibited time-independent inhibition of hPGHS-1 but time-dependent inhibition of hPGHS-2 in intact cells. Reversible inhibition of cellular CHO [hPGHS-1] and CHO [hPGHS-2] was observed with the nonselective NSAIDs ibuprofen and indomethacin, whereas inhibition by the selective PGHS-2 inhibitor DuP-697 was reversible against hPGHS-1 but irreversible against hPGHS-2.


Bioorganic & Medicinal Chemistry Letters | 2003

Discovery of a potent and selective agonist of the prostaglandin EP4 receptor

Xavier Billot; Anne Chateauneuf; Nathalie Chauret; Danielle Denis; Gillian Greig; Marie-Claude Mathieu; Kathleen M. Metters; Deborah Slipetz; Robert N. Young

Analogues of PGE(2) wherein the hydroxycyclopentanone ring has been replaced by a lactam have been prepared and evaluated as ligands for the EP(4) receptor. An optimized compound (19a) shows high potency and agonist efficacy at the EP(4) receptor and is highly selective over the other seven known prostaglandin receptors.


Bioorganic & Medicinal Chemistry Letters | 2003

Pyridazinones as selective cyclooxygenase-2 inhibitors.

Chun Sing Li; Christine Brideau; Chi-Chung Chan; Chantal Savoie; David Claveau; S. Charleson; Robert Gordon; Gillian Greig; Jacques Yves Gauthier; Cheuk K. Lau; Denis Riendeau; Michel Therien; Elizabeth Wong; Petpiboon Prasit

Pyridazinone was found to be an excellent core template for selective COX-2 inhibitors. Two potent, selective and orally active COX-2 inhibitors, which were highly efficacious in rat paw edema and rat pyresis models, have been obtained.


Bioorganic & Medicinal Chemistry Letters | 1997

Synthesis and biological evaluation of 5,6-diarylimidazo[2.1-b]thiazole as selective COX-2 inhibitors

Michel Therien; Christine Brideau; Chi-Chung Chan; Wanda Cromlish; Jacques Yves Gauthier; Robert Gordon; Gillian Greig; Stacia Kargman; Cheuk K. Lau; Yves Leblanc; Chun-Sing Li; Gary P. O'Neill; Denis Riendeau; Patrick Roy; Zhaoyin Wang; Lijing Xu; Petpiboon Prasit

Abstract A series of 5,6-diarylimidazo[2.1-b]thiazole compounds were prepared and their inhibitory potencies against COX-2 and Cox-1 enzymes were measured. This led to the identification of L-766,112 as a potent, orally active and selective inhibitor of the COX-2 enzyme.


Bioorganic & Medicinal Chemistry Letters | 1997

A new series of selective COX-2 inhibitors: 5,6-diarylthiazolo[3,2-b][1,2,4]triazoles

Patrick Roy; Yves Leblanc; Richard G. Ball; Christine Brideau; Chi-Chung Chan; Nathalie Chauret; Wanda Cromlish; Diane Ethier; Jacques-Yves Gauthier; Robert Gordon; Gillian Greig; Jocelyne Guay; Stacia Kargman; Cheuk K. Lau; Gary P. O'Neill; José M. Silva; Michel Therien; C. van Staden; Elizabeth Wong; Lijing Xu; Petpiboon Prasit

A series of 5,6-diarylthiazolo[3,2-b][1,2,4]triazoles was prepared for evaluation of potency and selectivity against human COX-1 and COX-2 enzymes. This lead to the discovery of L-768,277, a potent and selective COX-2 inhibitor that also demonstrated good in vivo activity.


Bioorganic & Medicinal Chemistry Letters | 2002

Structure–Activity Relationship of Biaryl Acylsulfonamide Analogues on the Human EP3 Prostanoid Receptor

Michel Gallant; Marie-Claude Carrière; Anne Chateauneuf; Danielle Denis; Yves Gareau; Claude Godbout; Gillian Greig; Helene Juteau; Nicolas Lachance; Patrick Lacombe; Sonia Lamontagne; Kathleen M. Metters; C. Rochette; Rejean Ruel; Deborah Slipetz; Nicole Sawyer; Nathalie Tremblay; Marc Labelle

Potent and selective ligands for the human EP3 prostanoid receptor are described. Biaryl compounds bearing a tethered ortho substituted acidic moiety were identified as potent EP3 antagonists based on the SAR described herein. The binding affinity of key compounds on all eight human prostanoid receptors is reported.


Bioorganic & Medicinal Chemistry Letters | 1996

NOVEL 1,2-DIARYLCYCLOBUTENES : SELECTIVE AND ORALLY ACTIVE COX-2 INHIBITORS

Richard W. Friesen; Daniel Dube; Rejean Fortin; Richard Frenette; Sylvie Prescott; Wanda Cromlish; Gillian Greig; Stacia Kargman; Elizabeth Wong; Chi-Chung Chan; Robert Gordon; Li Jing Xu; Denis Riendeau

A series of novel 2,3-diaryl-2-cyclobuten-l-ones have been synthesized and have been evaluated with respect to their ability to inhibit the isozymes of cyclooxygenase, COX-1 and COX-2. 4,4-Dimethyl-2- phenyl-3-(4-(methylsulfonyl)phenyl)cyclobutenone 22 was found to be highly selective for inhibition of COX-2 and was orally active (EDs0 = 2.4 mg/kg) in the rat paw edema model. Copyright


Bioorganic & Medicinal Chemistry Letters | 2008

Identification of prostaglandin D2 receptor antagonists based on a tetrahydropyridoindole scaffold.

Christian Beaulieu; Daniel Guay; Zhaoyin Wang; Yves Leblanc; Patrick Roy; Claude Dufresne; Robert Zamboni; Carl Berthelette; Stephen Day; Nancy N. Tsou; Danielle Denis; Gillian Greig; Marie-Claude Mathieu; Gary O’Neill

A new series of indole-based antagonists of the PGD(2) receptor subtype 1 (DP1 receptor) was identified and the progress of the structure-activity relationship study to the identification of potent and selective antagonists is presented. Selective DP1 antagonists with high potency and selectivity were prepared. Of particular interest is the DP1 antagonist 26 with a K(i) value of 1 nM for the DP1 receptor and an IC(50) value of 4.6 nM in a DP1 functional assay for the inhibition of the PGD(2) induced cAMP production in platelet rich plasma (PRP).

Researchain Logo
Decentralizing Knowledge