Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gillian Howard is active.

Publication


Featured researches published by Gillian Howard.


Nature | 2015

Endophilin marks and controls a clathrin-independent endocytic pathway

Emmanuel Boucrot; Antonio P.A. Ferreira; Leonardo Almeida-Souza; Sylvain Debard; Yvonne Vallis; Gillian Howard; Laetitia Bertot; Nathalie Sauvonnet; Harvey T. McMahon

Endocytosis is required for internalization of micronutrients and turnover of membrane components. Endophilin has been assigned as a component of clathrin-mediated endocytosis. Here we show in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition. This pathway is prominent at the leading edges of cells where phosphatidylinositol-3,4-bisphosphate—produced by the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate by SHIP1 and SHIP2—recruits lamellipodin, which in turn engages endophilin. This pathway mediates the ligand-triggered uptake of several G-protein-coupled receptors such as α2a- and β1-adrenergic, dopaminergic D3 and D4 receptors and muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, HGFR, VEGFR, PDGFR, NGFR and IGF1R, as well as interleukin-2 receptor. We call this new endocytic route fast endophilin-mediated endocytosis (FEME).


Nature Cell Biology | 2009

SDPR induces membrane curvature and functions in the formation of caveolae

Carsten Gram Hansen; Nicholas A. Bright; Gillian Howard; Benjamin J. Nichols

Caveolae are plasma membrane invaginations with a characteristic flask-shaped morphology. They function in diverse cellular processes, including endocytosis. The mechanism by which caveolae are generated is not fully understood, but both caveolin proteins and PTRF (polymerase I and transcript release factor, also known as cavin) are important. Here we show that loss of SDPR (serum deprivation protein response) causes loss of caveolae. SDPR binds directly to PTRF and recruits PTRF to caveolar membranes. Overexpression of SDPR, unlike PTRF, induces deformation of caveolae and extensive tubulation of the plasma membrane. The B-subunit of Shiga toxin (STB) also induces membrane tubulation and these membrane tubes also originate from caveolae. STB colocalizes extensively with both SDPR and caveolin 1. Loss of caveolae reduces the propensity of STB to induce membrane tubulation. We conclude that SDPR is a membrane-curvature-inducing component of caveolae, and that STB-induced membrane tubulation is facilitated by caveolae.


PLOS Biology | 2013

Molecular composition and ultrastructure of the caveolar coat complex.

Alexander Ludwig; Gillian Howard; Carolina Mendoza-Topaz; Thomas E. Deerinck; Mason R. Mackey; Sara Sandin; Mark H. Ellisman; Benjamin J. Nichols

The single protein caveolar coat complex comprises only cavins and caveolins, coats the caveolar bulb, and is probably responsible for creating caveolae.


Nature Communications | 2013

Deletion of cavin genes reveals tissue-specific mechanisms for morphogenesis of endothelial caveolae

Carsten Gram Hansen; Elena Shvets; Gillian Howard; Kirsi Riento; Benjamin J. Nichols

Caveolae are abundant in endothelial cells and are thought to have important roles in endothelial cell biology. The cavin proteins are key components of caveolae, and are expressed at varied amounts in different tissues. Here we use knockout mice to determine the roles of cavins 2 and 3 in caveolar morphogenesis in vivo. Deletion of cavin 2 causes loss of endothelial caveolae in lung and adipose tissue, but has no effect on the abundance of endothelial caveolae in heart and other tissues. Changes in the morphology of endothelium in cavin 2 null mice correlate with changes in caveolar abundance. Cavin 3 is not required for making caveolae in the tissues examined. Cavin 2 determines the size of cavin complexes, and acts to shape caveolae. Cavin 1, however, is essential for normal oligomerization of caveolin 1. Our data reveal that endothelial caveolae are heterogeneous, and identify cavin 2 as a determinant of this heterogeneity.


Nature Cell Biology | 2013

Vesicles modulate an actin network for asymmetric spindle positioning

Zuzana Holubcová; Gillian Howard; Melina Schuh

Actin networks drive many essential cellular processes, including cell migration, cytokinesis and tissue morphogenesis. However, how cells organize and regulate dynamic actin networks that consist of long, unbranched actin filaments is only poorly understood. This study in mouse oocytes reveals that cells can use vesicles as adaptable, motorized network nodes to regulate the dynamics and density of intracellular actin networks. In particular, Rab11a-positive vesicles drive the network dynamics in a myosin-Vb-dependent manner, and modulate the network density by sequestering and clustering the network’s actin nucleators. We also report a simple way by which networks of different densities can be generated, namely by adjusting the number and volume of vesicles in the cell. This vesicle-based mechanism of actin network modulation is essential for asymmetric positioning of the meiotic spindle in mouse oocytes, a vital step in the development of a fertilizable egg in mammals.


Journal of Cell Science | 2011

Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis

Carsten Gram Hansen; Gillian Howard; Benjamin J. Nichols

The pacsin (also termed syndapin) protein family is well characterised structurally. They contain F-BAR domains associated with the generation or maintenance of membrane curvature. The cell biology of these proteins remains less understood. Here, we initially confirm that EHD2, a protein previously shown biochemically to be present in caveolar fractions and to bind to pacsins, is a caveolar protein. We go on to report that GFP–pacsin 2 can be recruited to caveolae, and that endogenous pacsin 2 partially colocalises with caveolin 1 at the plasma membrane. Analysis of the role of pacsin 2 in caveolar biogenesis using small interfering RNA (siRNA) reveals that loss of pacsin 2 function results in loss of morphologically defined caveolae and accumulation of caveolin proteins within the plasma membrane. Overexpression of the F-BAR domain of pacsin 2 (but not the related F-BAR domains of CIP4 and FBP17) disrupts caveolar morphogenesis or trafficking, implying that pacsin 2 interacts with components required for these processes. We propose that pacsin 2 has an important role in the formation of plasma membrane caveolae.


Nature Communications | 2015

Dynamic caveolae exclude bulk membrane proteins and are required for sorting of excess glycosphingolipids

Elena Shvets; Vassilis Bitsikas; Gillian Howard; Carsten Gram Hansen; Benjamin J. Nichols

Caveolae have long been implicated in endocytosis. Recent data question this link, and in the absence of specific cargoes the potential cellular function of caveolar endocytosis remains unclear. Here we develop new tools, including doubly genome-edited cell lines, to assay the subcellular dynamics of caveolae using tagged proteins expressed at endogenous levels. We find that around 5% of the cellular pool of caveolae is present on dynamic endosomes, and is delivered to endosomes in a clathrin-independent manner. Furthermore, we show that caveolae are indeed likely to bud directly from the plasma membrane. Using a genetically encoded tag for electron microscopy and ratiometric light microscopy, we go on to show that bulk membrane proteins are depleted within caveolae. Although caveolae are likely to account for only a small proportion of total endocytosis, cells lacking caveolae show fundamentally altered patterns of membrane traffic when loaded with excess glycosphingolipid. Altogether, these observations support the hypothesis that caveolar endocytosis is specialized for transport of membrane lipid.


Current Biology | 2017

EHD Proteins Cooperate to Generate Caveolar Clusters and to Maintain Caveolae during Repeated Mechanical Stress

Ivana Yeow; Gillian Howard; Jessica Chadwick; Carolina Mendoza-Topaz; Carsten G. Hansen; Benjamin J. Nichols; Elena Shvets

Summary Caveolae introduce flask-shaped convolutions into the plasma membrane and help to protect the plasma membrane from damage under stretch forces. The protein components that form the bulb of caveolae are increasingly well characterized, but less is known about the contribution of proteins that localize to the constricted neck. Here we make extensive use of multiple CRISPR/Cas9-generated gene knockout and knockin cell lines to investigate the role of Eps15 Homology Domain (EHD) proteins at the neck of caveolae. We show that EHD1, EHD2, and EHD4 are recruited to caveolae. Recruitment of the other EHDs increases markedly when EHD2, which has been previously detected at caveolae, is absent. Construction of knockout cell lines lacking EHDs 1, 2, and 4 confirms this apparent functional redundancy. Two striking sets of phenotypes are observed in EHD1,2,4 knockout cells: (1) the characteristic clustering of caveolae into higher-order assemblies is absent; and (2) when the EHD1,2,4 knockout cells are subjected to prolonged cycles of stretch forces, caveolae are destabilized and the plasma membrane is prone to rupture. Our data identify the first molecular components that act to cluster caveolae into a membrane ultrastructure with the potential to extend stretch-buffering capacity and support a revised model for the function of EHDs at the caveolar neck.


Scientific Reports | 2016

Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG.

Julian Ng; Alyssa Browning; Lorenz Lechner; Masako Terada; Gillian Howard; Gregory S.X.E. Jefferis

Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition.


Cell | 2018

A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits.

Leonardo Almeida-Souza; René A.W. Frank; Javier García-Nafría; Adeline Colussi; Nushan Gunawardana; Christopher M. Johnson; Minmin Yu; Gillian Howard; Byron Andrews; Yvonne Vallis; Harvey T. McMahon

Summary Multiple proteins act co-operatively in mammalian clathrin-mediated endocytosis (CME) to generate endocytic vesicles from the plasma membrane. The principles controlling the activation and organization of the actin cytoskeleton during mammalian CME are, however, not fully understood. Here, we show that the protein FCHSD2 is a major activator of actin polymerization during CME. FCHSD2 deletion leads to decreased ligand uptake caused by slowed pit maturation. FCHSD2 is recruited to endocytic pits by the scaffold protein intersectin via an unusual SH3-SH3 interaction. Here, its flat F-BAR domain binds to the planar region of the plasma membrane surrounding the developing pit forming an annulus. When bound to the membrane, FCHSD2 activates actin polymerization by a mechanism that combines oligomerization and recruitment of N-WASP to PI(4,5)P2, thus promoting pit maturation. Our data therefore describe a molecular mechanism for linking spatiotemporally the plasma membrane to a force-generating actin platform guiding endocytic vesicle maturation.

Collaboration


Dive into the Gillian Howard's collaboration.

Top Co-Authors

Avatar

Benjamin J. Nichols

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elena Shvets

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Carolina Mendoza-Topaz

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Alexi Crosby

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harvey T. McMahon

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Jessica Chadwick

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yvonne Vallis

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge