Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gillian I. Rice is active.

Publication


Featured researches published by Gillian I. Rice.


Nature | 2011

HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase

David C. Goldstone; Valerie Ennis-Adeniran; Joseph J. Hedden; Harriet C. T. Groom; Gillian I. Rice; Evangelos Christodoulou; Philip A. Walker; Geoff Kelly; Lesley F. Haire; Melvyn W. Yap; Luiz Pedro S. de Carvalho; Jonathan P. Stoye; Yanick J. Crow; Ian A. Taylor; Michelle Webb

SAMHD1, an analogue of the murine interferon (IFN)-γ-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction. SAMHD1 is also associated with Aicardi–Goutières syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-α. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.


Nature Genetics | 2009

Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response

Gillian I. Rice; Jacquelyn Bond; Aruna Asipu; Rebecca L. Brunette; Iain W. Manfield; Ian M. Carr; Jonathan C. Fuller; Richard M. Jackson; Teresa Lamb; Tracy A. Briggs; Manir Ali; Hannah Gornall; Alec Aeby; Simon P Attard-Montalto; Enrico Bertini; C. Bodemer; Knut Brockmann; Louise Brueton; Peter Corry; Isabelle Desguerre; Elisa Fazzi; Angels Garcia Cazorla; Blanca Gener; B.C.J. Hamel; Arvid Heiberg; Matthew Hunter; Marjo S. van der Knaap; Ram Kumar; Lieven Lagae; Pierre Landrieu

Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.


Nature Genetics | 2012

Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature

Gillian I. Rice; Paul R. Kasher; Gabriella M.A. Forte; Niamh M. Mannion; Sam M. Greenwood; Marcin Szynkiewicz; Jonathan E. Dickerson; Sanjeev Bhaskar; Massimiliano Zampini; Tracy A. Briggs; Emma M. Jenkinson; Carlos A. Bacino; Roberta Battini; Enrico Bertini; Paul A. Brogan; Louise Brueton; Marialuisa Carpanelli; Corinne De Laet; Pascale de Lonlay; Mireia del Toro; Isabelle Desguerre; Elisa Fazzi; Angels García-Cazorla; Arvid Heiberg; Masakazu Kawaguchi; Ram Kumar; Jean-Pierre Lin; Charles Marques Lourenço; Alison Male; Wilson Marques

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.


Biochemical Journal | 2004

Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism

Gillian I. Rice; Daniel A. Thomas; Peter J. Grant; Anthony J. Turner; Nigel M. Hooper

In the RAS (renin-angiotensin system), Ang I (angiotensin I) is cleaved by ACE (angiotensin-converting enzyme) to form Ang II (angiotensin II), which has effects on blood pressure, fluid and electrolyte homoeostasis. We have examined the kinetics of angiotensin peptide cleavage by full-length human ACE, the separate N- and C-domains of ACE, the homologue of ACE, ACE2, and NEP (neprilysin). The activity of the enzyme preparations was determined by active-site titrations using competitive tight-binding inhibitors and fluorogenic substrates. Ang I was effectively cleaved by NEP to Ang (1-7) (kcat/K(m) of 6.2x10(5) M(-1) x s(-1)), but was a poor substrate for ACE2 (kcat/K(m) of 3.3x10(4) M(-1) x s(-1)). Ang (1-9) was a better substrate for NEP than ACE (kcat/K(m) of 3.7x10(5) M(-1) x s(-1) compared with kcat/K(m) of 6.8x10(4) M(-1) x s(-1)). Ang II was cleaved efficiently by ACE2 to Ang (1-7) (kcat/K(m) of 2.2x10(6) M(-1) x s(-1)) and was cleaved by NEP (kcat/K(m) of 2.2x10(5) M(-1) x s(-1)) to several degradation products. In contrast with a previous report, Ang (1-7), like Ang I and Ang (1-9), was cleaved with a similar efficiency by both the N- and C-domains of ACE (kcat/K(m) of 3.6x10(5) M(-1) x s(-1) compared with kcat/K(m) of 3.3x10(5) M(-1) x s(-1)). The two active sites of ACE exhibited negative co-operativity when either Ang I or Ang (1-7) was the substrate. In addition, a range of ACE inhibitors failed to inhibit ACE2. These kinetic data highlight that the flux of peptides through the RAS is complex, with the levels of ACE, ACE2 and NEP dictating whether vasoconstriction or vasodilation will predominate.


Nature Genetics | 2014

Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling

Gillian I. Rice; Yoandris del Toro Duany; Emma M. Jenkinson; Gabriella M.A. Forte; Beverley Anderson; Giada Ariaudo; Brigitte Bader-Meunier; Roberta Battini; Michael W. Beresford; Manuela Casarano; Mondher Chouchane; Rolando Cimaz; Abigail Collins; Nuno J V Cordeiro; Russell C. Dale; Joyce Davidson; Liesbeth De Waele; Isabelle Desguerre; Laurence Faivre; Elisa Fazzi; Bertrand Isidor; Lieven Lagae; Andrew Latchman; Pierre Lebon; Chumei Li; John H. Livingston; Charles Marques Lourenço; Maria Margherita Mancardi; Alice Masurel-Paulet; Iain B. McInnes

The type I interferon system is integral to human antiviral immunity. However, inappropriate stimulation or defective negative regulation of this system can lead to inflammatory disease. We sought to determine the molecular basis of genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome and of other undefined neurological and immunological phenotypes also demonstrating an upregulated type I interferon response. We found that heterozygous mutations in the cytosolic double-stranded RNA receptor gene IFIH1 (also called MDA5) cause a spectrum of neuroimmunological features consistently associated with an enhanced interferon state. Cellular and biochemical assays indicate that these mutations confer gain of function such that mutant IFIH1 binds RNA more avidly, leading to increased baseline and ligand-induced interferon signaling. Our results demonstrate that aberrant sensing of nucleic acids can cause immune upregulation.


Retrovirology | 2012

SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+T-cells

Benjamin Descours; Alexandra Cribier; Christine Chable-Bessia; Diana Ayinde; Gillian I. Rice; Yanick J. Crow; Ahmad Yatim; Olivier Schwartz; Nadine Laguette; Monsef Benkirane

BackgroundQuiescent CD4+ T lymphocytes are highly refractory to HIV-1 infection due to a block at reverse transcription.ResultsExamination of SAMHD1 expression in peripheral blood lymphocytes shows that SAMHD1 is expressed in both CD4+ and CD8+ T cells at levels comparable to those found in myeloid cells. Treatment of CD4+ T cells with Virus-Like Particles (VLP) containing Vpx results in the loss of SAMHD1 expression that correlates with an increased permissiveness to HIV-1 infection and accumulation of reverse transcribed viral DNA without promoting transcription from the viral LTR. Importantly, CD4+ T-cells from patients with Aicardi-Goutières Syndrome harboring mutation in the SAMHD1 gene display an increased susceptibility to HIV-1 infection that is not further enhanced by VLP-Vpx-treatment.ConclusionHere, we identified SAMHD1 as the restriction factor preventing efficient viral DNA synthesis in non-cycling resting CD4+ T-cells. These results highlight the crucial role of SAMHD1 in mediating restriction of HIV-1 infection in quiescent CD4+ T-cells and could impact our understanding of HIV-1 mediated CD4+ T-cell depletion and establishment of the viral reservoir, two of the HIV/AIDS hallmarks.


Nature | 2015

Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation

Xianqin Zhang; Dusan Bogunovic; Béatrice Payelle-Brogard; Véronique Francois-Newton; Scott D. Speer; Chao Yuan; Stefano Volpi; Zhi Li; Ozden Sanal; Davood Mansouri; Ilhan Tezcan; Gillian I. Rice; Chunyuan Chen; Nahal Mansouri; Seyed Alireza Mahdaviani; Yuval Itan; Bertrand Boisson; Satoshi Okada; Lu Zeng; Xing Wang; Hui Jiang; Wenqiang Liu; Tiantian Han; Delin Liu; Tao Ma; Bo Wang; Mugen Liu; Jing Yu Liu; Wang Q; Dilek Yalnizoglu

Intracellular ISG15 is an interferon (IFN)-α/β-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/β-dependent antiviral immunity in mice. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/β immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi–Goutières syndrome and spondyloenchondrodysplasia. We further show that an absence of intracellular ISG15 in the patients’ cells prevents the accumulation of USP18, a potent negative regulator of IFN-α/β signalling, resulting in the enhancement and amplification of IFN-α/β responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/β immunity. In humans, intracellular ISG15 is IFN-α/β-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/β and prevention of IFN-α/β-dependent autoinflammation.


Nature Genetics | 2011

Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature

Tracy A. Briggs; Gillian I. Rice; Sarah B. Daly; Jill Urquhart; Hannah Gornall; Brigitte Bader-Meunier; Kannan Baskar; Shankar Baskar; Veronique Baudouin; Michael W. Beresford; Graeme C.M. Black; Rebecca J. Dearman; Francis de Zegher; Emily S. Foster; Camille Frances; Alison R. Hayman; Emma Hilton; Chantal Job-Deslandre; M. L. Kulkarni; Martine Le Merrer; Agnès Linglart; Simon C. Lovell; Kathrin Maurer; L. Musset; Vincent Navarro; Capucine Picard; Anne Puel; Frédéric Rieux-Laucat; Chaim M. Roifman; Sabine Scholl-Bürgi

We studied ten individuals from eight families showing features consistent with the immuno-osseous dysplasia spondyloenchondrodysplasia. Of particular note was the diverse spectrum of autoimmune phenotypes observed in these individuals (cases), including systemic lupus erythematosus, Sjögrens syndrome, hemolytic anemia, thrombocytopenia, hypothyroidism, inflammatory myositis, Raynauds disease and vitiligo. Haplotype data indicated the disease gene to be on chromosome 19p13, and linkage analysis yielded a combined multipoint log10 odds (LOD) score of 3.6. Sequencing of ACP5, encoding tartrate-resistant acid phosphatase, identified biallelic mutations in each of the cases studied, and in vivo testing confirmed a loss of expressed protein. All eight cases assayed showed elevated serum interferon alpha activity, and gene expression profiling in whole blood defined a type I interferon signature. Our findings reveal a previously unrecognized link between tartrate-resistant acid phosphatase activity and interferon metabolism and highlight the importance of type I interferon in the genesis of autoimmunity.


Nature Genetics | 2012

Mutations in CTC1, encoding conserved telomere maintenance component 1, cause Coats plus

Beverley Anderson; Paul R. Kasher; Josephine Mayer; Marcin Szynkiewicz; Emma M. Jenkinson; Sanjeev Bhaskar; Jill Urquhart; Sarah B. Daly; Jonathan E. Dickerson; James O'Sullivan; Elisabeth Oppliger Leibundgut; Joanne Muter; Ghada M H Abdel-Salem; Riyana Babul-Hirji; Peter Baxter; Andrea Berger; Luisa Bonafé; Janice E Brunstom-Hernandez; Johannes A Buckard; David Chitayat; Wk Chong; Duccio Maria Cordelli; Patrick Ferreira; Joel Victor Fluss; Ewan H. Forrest; Emilio Franzoni; Caterina Garone; Simon Hammans; Gunnar Houge; Imelda Hughes

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.


Lancet Neurology | 2013

Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: A case-control study

Gillian I. Rice; Gabriella M.A. Forte; Marcin Szynkiewicz; Diana Chase; Alec Aeby; Mohamed S. Abdel-Hamid; Sam Ackroyd; Rebecca L Allcock; Kathryn M. Bailey; Umberto Balottin; Christine Barnerias; Geneviève Bernard; C. Bodemer; Maria P. Botella; Cristina Cereda; Kate Chandler; Lyvia Dabydeen; Russell C. Dale; Corinne De Laet; Christian de Goede; Mireia del Toro; Laila Effat; Noemi Nunez Enamorado; Elisa Fazzi; Blanca Gener; Madli Haldre; Jean-Pierre Lin; John H. Livingston; Charles Marques Lourenço; Wilson Marques

BACKGROUND Aicardi-Goutières syndrome (AGS) is an inflammatory disorder caused by mutations in any of six genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR). The disease is severe and effective treatments are urgently needed. We investigated the status of interferon-related biomarkers in patients with AGS with a view to future use in diagnosis and clinical trials. METHODS In this case-control study, samples were collected prospectively from patients with mutation-proven AGS. The expression of six interferon-stimulated genes (ISGs) was measured by quantitative PCR, and the median fold change, when compared with the median of healthy controls, was used to create an interferon score for each patient. Scores higher than the mean of controls plus two SD (>2·466) were designated as positive. Additionally, we collated historical data for interferon activity, measured with a viral cytopathic assay, in CSF and serum from mutation-positive patients with AGS. We also undertook neutralisation assays of interferon activity in serum, and looked for the presence of autoantibodies against a panel of interferon proteins. FINDINGS 74 (90%) of 82 patients had a positive interferon score (median 12·90, IQR 6·14-20·41) compared with two (7%) of 29 controls (median 0·93, IQR 0·57-1·30). Of the eight patients with a negative interferon score, seven had mutations in RNASEH2B (seven [27%] of all 26 patients with mutations in this gene). Repeat sampling in 16 patients was consistent for the presence or absence of an interferon signature on 39 of 41 occasions. Interferon activity (tested in 147 patients) was negatively correlated with age (CSF, r=-0·604; serum, r=-0·289), and was higher in CSF than in serum in 104 of 136 paired samples. Neutralisation assays suggested that measurable antiviral activity was related to interferon α production. We did not record significantly increased concentrations of autoantibodies to interferon subtypes in patients with AGS, or an association between the presence of autoantibodies and interferon score or serum interferon activity. INTERPRETATION AGS is consistently associated with an interferon signature, which is apparently sustained over time and can thus be used to differentiate patients with AGS from controls. If future studies show that interferon status is a reactive biomarker, the measurement of an interferon score might prove useful in the assessment of treatment efficacy in clinical trials. FUNDING European Unions Seventh Framework Programme; European Research Council.

Collaboration


Dive into the Gillian I. Rice's collaboration.

Top Co-Authors

Avatar

Yanick J. Crow

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John H. Livingston

Leeds Teaching Hospitals NHS Trust

View shared research outputs
Top Co-Authors

Avatar

Brigitte Bader-Meunier

Necker-Enfants Malades Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Bodemer

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar

Pierre Lebon

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Kasher

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge