Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gillian M. Mackay is active.

Publication


Featured researches published by Gillian M. Mackay.


Nature | 2013

p53 status determines the role of autophagy in pancreatic tumour development

Mathias Rosenfeldt; Jim O'Prey; Jennifer P. Morton; Colin Nixon; Gillian M. Mackay; Agata Mrowinska; Amy Au; Taranjit Singh Rai; Liang Zheng; Rachel A. Ridgway; Peter D. Adams; Kurt I. Anderson; Eyal Gottlieb; Owen J. Sansom; Kevin M. Ryan

Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating both pro-tumorigenic and tumour-suppressive roles. Here we show, in a humanized genetically-modified mouse model of pancreatic ductal adenocarcinoma (PDAC), that autophagy’s role in tumour development is intrinsically connected to the status of the tumour suppressor p53. Mice with pancreases containing an activated oncogenic allele of Kras (also called Ki-Ras)—the most common mutational event in PDAC—develop a small number of pre-cancerous lesions that stochastically develop into PDAC over time. However, mice also lacking the essential autophagy genes Atg5 or Atg7 accumulate low-grade, pre-malignant pancreatic intraepithelial neoplasia lesions, but progression to high-grade pancreatic intraepithelial neoplasias and PDAC is blocked. In marked contrast, in mice containing oncogenic Kras and lacking p53, loss of autophagy no longer blocks tumour progression, but actually accelerates tumour onset, with metabolic analysis revealing enhanced glucose uptake and enrichment of anabolic pathways, which can fuel tumour growth. These findings provide considerable insight into the role of autophagy in cancer and have important implications for autophagy inhibition in cancer therapy. In this regard, we also show that treatment of mice with the autophagy inhibitor hydroxychloroquine, which is currently being used in several clinical trials, significantly accelerates tumour formation in mice containing oncogenic Kras but lacking p53.


Nature | 2013

A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence

Liang Zheng; Katrin Meissl; Barbara Chaneton; Vitaly A. Selivanov; Gillian M. Mackay; Sjoerd H. van der Burg; Elizabeth M. E. Verdegaal; Marta Cascante; Tomer Shlomi; Eyal Gottlieb; Daniel S. Peeper

In response to tenacious stress signals, such as the unscheduled activation of oncogenes, cells can mobilize tumour suppressor networks to avert the hazard of malignant transformation. A large body of evidence indicates that oncogene-induced senescence (OIS) acts as such a break, withdrawing cells from the proliferative pool almost irreversibly, thus crafting a vital pathophysiological mechanism that protects against cancer. Despite the widespread contribution of OIS to the cessation of tumorigenic expansion in animal models and humans, we have only just begun to define the underlying mechanism and identify key players. Although deregulation of metabolism is intimately linked to the proliferative capacity of cells, and senescent cells are thought to remain metabolically active, little has been investigated in detail about the role of cellular metabolism in OIS. Here we show, by metabolic profiling and functional perturbations, that the mitochondrial gatekeeper pyruvate dehydrogenase (PDH) is a crucial mediator of senescence induced by BRAFV600E, an oncogene commonly mutated in melanoma and other cancers. BRAFV600E-induced senescence was accompanied by simultaneous suppression of the PDH-inhibitory enzyme pyruvate dehydrogenase kinase 1 (PDK1) and induction of the PDH-activating enzyme pyruvate dehydrogenase phosphatase 2 (PDP2). The resulting combined activation of PDH enhanced the use of pyruvate in the tricarboxylic acid cycle, causing increased respiration and redox stress. Abrogation of OIS, a rate-limiting step towards oncogenic transformation, coincided with reversion of these processes. Further supporting a crucial role of PDH in OIS, enforced normalization of either PDK1 or PDP2 expression levels inhibited PDH and abrogated OIS, thereby licensing BRAFV600E-driven melanoma development. Finally, depletion of PDK1 eradicated melanoma subpopulations resistant to targeted BRAF inhibition, and caused regression of established melanomas. These results reveal a mechanistic relationship between OIS and a key metabolic signalling axis, which may be exploited therapeutically.


Cancer Cell | 2015

Acetyl-CoA Synthetase 2 Promotes Acetate Utilization and Maintains Cancer Cell Growth under Metabolic Stress

Zachary T. Schug; Barrie Peck; Dylan T. Jones; Qifeng Zhang; Shaun Grosskurth; Israt S. Alam; Louise Goodwin; Elizabeth Smethurst; Susan M. Mason; Karen Blyth; Lynn McGarry; Daniel James; Emma Shanks; Gabriela Kalna; Rebecca E. Saunders; Ming Jiang; Michael Howell; Francois Lassailly; May Zaw Thin; Bradley Spencer-Dene; Gordon Stamp; Niels J. F. van den Broek; Gillian M. Mackay; Vinay Bulusu; Jurre J. Kamphorst; Saverio Tardito; David P. Strachan; Adrian L. Harris; Eric O. Aboagye; Susan E. Critchlow

Summary A functional genomics study revealed that the activity of acetyl-CoA synthetase 2 (ACSS2) contributes to cancer cell growth under low-oxygen and lipid-depleted conditions. Comparative metabolomics and lipidomics demonstrated that acetate is used as a nutritional source by cancer cells in an ACSS2-dependent manner, and supplied a significant fraction of the carbon within the fatty acid and phospholipid pools. ACSS2 expression is upregulated under metabolically stressed conditions and ACSS2 silencing reduced the growth of tumor xenografts. ACSS2 exhibits copy-number gain in human breast tumors, and ACSS2 expression correlates with disease progression. These results signify a critical role for acetate consumption in the production of lipid biomass within the harsh tumor microenvironment.


Cell Reports | 2014

Serine, but Not Glycine, Supports One-Carbon Metabolism and Proliferation of Cancer Cells

Christiaan F. Labuschagne; Niels J. F. van den Broek; Gillian M. Mackay; Karen H. Vousden; Oliver D.K. Maddocks

Previous work has shown that some cancer cells are highly dependent on serine/glycine uptake for proliferation. Although serine and glycine can be interconverted and either might be used for nucleotide synthesis and one-carbon metabolism, we show that exogenous glycine cannot replace serine to support cancer cell proliferation. Cancer cells selectively consumed exogenous serine, which was converted to intracellular glycine and one-carbon units for building nucleotides. Restriction of exogenous glycine or depletion of the glycine cleavage system did not impede proliferation. In the absence of serine, uptake of exogenous glycine was unable to support nucleotide synthesis. Indeed, higher concentrations of glycine inhibited proliferation. Under these conditions, glycine was converted to serine, a reaction that would deplete the one-carbon pool. Providing one-carbon units by adding formate rescued nucleotide synthesis and growth of glycine-fed cells. We conclude that nucleotide synthesis and cancer cell proliferation are supported by serine--rather than glycine--consumption.


Nature Cell Biology | 2015

Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis

Simone Cardaci; Liang Zheng; Gillian M. Mackay; Niels J. F. van den Broek; Elaine D. MacKenzie; Colin Nixon; David Stevenson; Sergey Tumanov; Vinay Bulusu; Jurre J. Kamphorst; Alexei Vazquez; Stewart Fleming; Francesca Schiavi; Gabriela Kalna; Karen Blyth; Douglas Strathdee; Eyal Gottlieb

Succinate dehydrogenase (SDH) is a heterotetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and used comparative metabolomics and stable-isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as essential for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies.


Molecular & Cellular Proteomics | 2015

Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability

Francesca Patella; Zachary T. Schug; Erez Persi; Lisa J. Neilson; Zahra Erami; Daniele Avanzato; Federica Maione; Juan Ramon Hernandez-Fernaud; Gillian M. Mackay; Liang Zheng; Steven Reid; Christian Frezza; Enrico Giraudo; Alessandra Fiorio Pla; Kurt I. Anderson; Eytan Ruppin; Eyal Gottlieb; Sara Zanivan

Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.


Nature | 2017

Modulating the therapeutic response of tumours to dietary serine and glycine starvation

Oliver D.K. Maddocks; Dimitris Athineos; Eric C. Cheung; Pearl Lee; Tong Zhang; Niels J. F. van den Broek; Gillian M. Mackay; Christiaan F. Labuschagne; Flore Kruiswijk; Julianna Blagih; David F. Vincent; Kirsteen J. Campbell; Fatih Ceteci; Owen J. Sansom; Karen Blyth; Karen H. Vousden

The non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1). While some cancer cells upregulate de novo serine synthesis, many others rely on exogenous serine for optimal growth. Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models. Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Kras-driven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.


Molecular Cell | 2013

Extracellular adenosine sensing—a metabolic cell death priming mechanism downstream of p53

Jaclyn S. Long; Diane Crighton; James O’Prey; Gillian M. Mackay; Liang Zheng; Timothy M. Palmer; Eyal Gottlieb; Kevin M. Ryan

Tumor cells undergo changes in metabolism to meet their energetic and anabolic needs. It is conceivable that mechanisms exist to sense these changes and link them to pathways that eradicate cells primed for cancer development. We report that the tumor suppressor p53 activates a cell death priming mechanism that senses extracellular adenosine. Adenosine, the backbone of ATP, accumulates under conditions of cellular stress or altered metabolism. We show that its receptor, A2B, is upregulated by p53. A2B expression has little effect on cell viability, but ligand engagement activates a caspase- and Puma-dependent apoptotic response involving downregulation of antiapoptotic Bcl-2 proteins. Stimulation of A2B also significantly enhances cell death mediated by p53 and upon accumulation of endogenous adenosine following chemotherapeutic drug treatment and exposure to hypoxia. Since extracellular adenosine also accumulates within many solid tumors, this distinct p53 function links programmed cell death to both a cancer- and therapy-associated metabolic change.


Cell Reports | 2017

Acetate Recapturing by Nuclear Acetyl-CoA Synthetase 2 Prevents Loss of Histone Acetylation during Oxygen and Serum Limitation

Vinay Bulusu; Sergey Tumanov; Evdokia Michalopoulou; Niels J. F. van den Broek; Gillian M. Mackay; Colin Nixon; Sandeep Dhayade; Zachary T. Schug; Johan Vande Voorde; Karen Blyth; Eyal Gottlieb; Alexei Vazquez; Jurre J. Kamphorst

Summary Acetyl-CoA is a key metabolic intermediate with an important role in transcriptional regulation. The nuclear-cytosolic acetyl-CoA synthetase 2 (ACSS2) was found to sustain the growth of hypoxic tumor cells. It generates acetyl-CoA from acetate, but exactly which pathways it supports is not fully understood. Here, quantitative analysis of acetate metabolism reveals that ACSS2 fulfills distinct functions depending on its cellular location. Exogenous acetate uptake is controlled by expression of both ACSS2 and the mitochondrial ACSS1, and ACSS2 supports lipogenesis. The mitochondrial and lipogenic demand for two-carbon acetyl units considerably exceeds the uptake of exogenous acetate, leaving it to only sparingly contribute to histone acetylation. Surprisingly, oxygen and serum limitation increase nuclear localization of ACSS2. We find that nuclear ACSS2 recaptures acetate released from histone deacetylation for recycling by histone acetyltransferases. Our work provides evidence for limited equilibration between nuclear and cytosolic acetyl-CoA and demonstrates that ACSS2 retains acetate to maintain histone acetylation.


Science Advances | 2016

Serine one-carbon catabolism with formate overflow

Johannes Meiser; Sergey Tumanov; Oliver D.K. Maddocks; Christiaan F. Labuschagne; Dimitris Athineos; Niels J. F. van den Broek; Gillian M. Mackay; Eyal Gottlieb; Karen Blyth; Karen H. Vousden; Jurre J. Kamphorst; Alexei Vazquez

Serine catabolism results in formate efflux that exceeds anabolic demands for purine synthesis. Serine catabolism to glycine and a one-carbon unit has been linked to the anabolic requirements of proliferating mammalian cells. However, genome-scale modeling predicts a catabolic role with one-carbon release as formate. We experimentally prove that in cultured cancer cells and nontransformed fibroblasts, most of the serine-derived one-carbon units are released from cells as formate, and that formate release is dependent on mitochondrial reverse 10-CHO-THF synthetase activity. We also show that in cancer cells, formate release is coupled to mitochondrial complex I activity, whereas in nontransformed fibroblasts, it is partially insensitive to inhibition of complex I activity. We demonstrate that in mice, about 50% of plasma formate is derived from serine and that serine starvation or complex I inhibition reduces formate synthesis in vivo. These observations transform our understanding of one-carbon metabolism and have implications for the treatment of diabetes and cancer with complex I inhibitors.

Collaboration


Dive into the Gillian M. Mackay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liang Zheng

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge