Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gillian M. Morrison is active.

Publication


Featured researches published by Gillian M. Morrison.


Infection and Immunity | 2002

Characterization of the Mouse Beta Defensin 1, Defb1, Mutant Mouse Model

Gillian M. Morrison; Fiona Kilanowski; Donald J. Davidson; Julia R. Dorin

ABSTRACT Beta defensins are small cationic antimicrobial peptides present in the respiratory system which have been proposed to be dysfunctional in the environment of the cystic fibrosis lung. Defb1, a murine homologue to the human beta defensins, has also been found to be expressed in the respiratory system and, in order to examine the function of beta defensins in vivo, gene targeting was used to generate Defb1-deficient (Defb1tm1Hgu/Defb1tm1Hgu [Defb1−/−]) mice. The Defb1 synthetic peptide was shown to have a salt-sensitive antimicrobial activity that was stronger against Staphylococcus aureus than against Escherichia coli or Pseudomonas aeruginosa. Defb1−/− mice were found, however, to be effective in the clearance of the cystic fibrosis relevant pathogen S. aureus from the airways after nebulization. Although no overt deleterious phenotype was evident in the Defb1−/− mice, the number of mutant mice found to harbor bacteria of the Staphylococcus species in the bladder was significantly higher (P = 0.008) than that of controls, suggesting a role for these peptides in resistance to urinary tract infection.


Development | 2006

Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development

Gillian M. Morrison; Joshua M. Brickman

All vertebrate embryos have multipotent cells until gastrulation but, to date, derivation of embryonic stem (ES) cell lines has been achieved only for mouse and primates. ES cells are derived from mammalian inner cell mass (ICM) tissue that express the Class V POU domain (PouV) protein Oct4. Loss of Oct4 in mice results in a failure to maintain ICM and consequently an inability to derive ES cells. Here, we show that Oct4 homologues also function in early amphibian development where they act as suppressors of commitment during germ layer specification. Antisense morpholino mediated PouV knockdown in Xenopus embryos resulted in severe posterior truncations and anterior neural defects. Gastrulation stage embryos showed reduced expression of genes associated with uncommitted marginal zone cells, while the expression of markers associated with more mature cell states was expanded. Importantly, we have tested PouV proteins from a number of vertebrate species for the ability to substitute Oct4 in mouse ES cells. PouV domain proteins from both Xenopus and axolotl could support murine ES cell self-renewal but the only identified zebrafish protein in this family could not. Moreover, we found that PouV proteins regulated similar genes in ES cells and Xenopus embryos, and that PouV proteins capable of supporting ES cell self-renewal could also rescue the Xenopus PouV knockdown phenotype. We conclude that the unique ability of Oct4 to maintain ES cell pluripotency is derived from an ancestral function of this class of proteins to maintain multipotency.


Cell Stem Cell | 2008

Anterior Definitive Endoderm from ESCs Reveals a Role for FGF Signaling

Gillian M. Morrison; Ifigenia Oikonomopoulou; Rosa Portero Migueles; Shamit Soneji; Alessandra Livigni; Tariq Enver; Joshua M. Brickman

The use of embryonic stem cell (ESC) differentiation to generate functional hepatic or pancreatic progenitors and as a tool for developmental biology is limited by an inability to isolate in vitro equivalents of regionally specified anterior definitive endoderm (ADE). To address this, we devised a strategy using a fluorescent reporter gene under the transcriptional control of the anterior endoderm marker Hex alongside the definitive mesendoderm marker Cxcr4. Isolation of Hex(+)Cxcr4(+) differentiating ESCs yielded a population expressing ADE markers that both can be expanded and is competent to undergo differentiation toward liver and pancreatic fates. Hex reporter ESCs were also used to define conditions for ADE specification in serum-free adherent culture and revealed an unexpected role for FGF signaling in the generation of ADE. Our findings in defined monolayer differentiation suggest FGF signaling is an important regulator of early anterior mesendoderm differentiation rather than merely a mediator of morphogenetic movement.


Molecular Immunology | 2003

Rapid sequence divergence in mammalian β-defensins by adaptive evolution

A.I Maxwell; Gillian M. Morrison; Julia R. Dorin

beta-Defensin genes encode broad spectrum antimicrobial cationic peptides. We have analysed the largest murine and human clusters of these genes, which localise to mouse and human chromosome 8. Using hidden Markov models, we identified novel mouse and human beta-defensin genes. We subsequently found full-length expressed transcripts for these novel genes. Expression in the mouse was high in brain and reproductive tissues. Fourteen murine beta-defensins could be grouped into two clear sub-groups by virtue of their position and high signal sequence (exon 1 encoded) identity. In contrast, there was a very low level of sequence conservation in the exon 2 region encoding the mature antimicrobial peptide. Evolutionary analysis revealed strong evidence that following gene duplication, exon 1 and surrounding non-coding DNA show little divergence within subfamilies. The focus for rapid sequence divergence is localised in the DNA encoding the mature peptide and this is driven by accelerated positive selection. In the human we also conclude that the locus has evolved by successive rounds of duplication followed by substantial divergence involving positive selection, to produce a diverse cluster of paralogous genes prior to human-baboon divergence. This mechanism of adaptive evolution is consistent with the role of this gene family as defence against bacterial pathogens. In order to look at function of these rapidly evolving genes, we characterised one of the novel mouse beta-defensin genes. This gene deviates from the canonical six cysteine motif present in the mature functional peptide of all other beta defensins. This defensin related gene (Defr1) is most highly expressed in testis and heart and the genomic organisation is highly similar to Defb3-6. A synthetic Defr1 peptide was shown to exist as a dimer and yet displayed both antimicrobial and chemotactic activity. The antimicrobial activity of Defr1 against S. aureus, E. coli and B. cepacia was found to be reduced in raised concentration of NaCl, but its action against P. aeruginosa was independent of NaCl concentration. These data have major implications on the structure and functions of these important host defence molecules.


Mammalian Genome | 1998

Mouse beta defensin-1 is a functional homolog of human beta defensin-1

Gillian M. Morrison; Donald J. Davidson; Fiona Kilanowski; Duncan W. Borthwick; Ken Crook; Alison I. Maxwell; John R. W. Govan; Julia R. Dorin

Abstract. Defensin are 3–4 kDa antimicrobial peptides of which three distinct families have been identified; α-defensin, β-defensins, and insect defensins. Recent investigations have shown that β-defensins are present in the human airways and may be relevant to the pathogenesis of cystic fibrosis (CF) lung disease. We report here the further characterization of a recently identified mouse β-defensin gene, Defb1, sometimes referred to as mBD-1, which is homologous to the human airway beta defensin hBD-1. We report that Defb1 is expressed in a variety of tissues including the airways and, similar to hBD-1, is not upregulated by lipopolysaccharide (LPS). Defb1 was found to consist of two small exons separated by a 16-kb intron and cytogenetic, and physical mapping linked it to the alpha defensin gene cluster on mouse Chromosome (Chr) 8. Functional studies demonstrate that, like hBD-1, Defb1 demonstrates a salt-sensitive antimicrobial activity against Pseudomonas aeruginosa. Of relevance to CF lung disease is the fact that neither the hBD-1 nor the mBD-1 peptides are active against Burkholderia cepacia.


FEBS Letters | 1999

A novel mouse beta defensin, Defb2, which is upregulated in the airways by lipopolysaccharide

Gillian M. Morrison; Donald J. Davidson; Julia R. Dorin

Studies have shown that beta defensins are present in the human airways and may be relevant to the pathogenesis of cystic fibrosis lung disease. Here we report the identification of a novel mouse gene, Defb2, which shows sequence similarity to previously described mouse and human airway beta defensins. Defb2 does not appear to be expressed in the airways of untreated mice but it is upregulated in response to lipopolysaccharide. The induced expression of this gene by an inflammatory stimulus strongly suggests that this defensin contributes to host defence at the mucosal surface of the airways.


Cell Reports | 2012

Transcriptional Activation by Oct4 Is Sufficient for the Maintenance and Induction of Pluripotency

Fella Hammachi; Gillian M. Morrison; Alexei A. Sharov; Alessandra Livigni; Santosh Narayan; Eirini P. Papapetrou; James O'malley; Keisuke Kaji; Minoru S.H. Ko; Mark Ptashne; Joshua M. Brickman

Summary Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these functions. Here, we show that fusion proteins containing the coding sequence of Oct4 or Xlpou91 (the Xenopus homolog of Oct4) fused to activating regions, but not those fused to repressing regions, behave as Oct4, suppressing differentiation and promoting maintenance of undifferentiated phenotypes in vivo and in vitro. An Oct4 activation domain fusion supported embryonic stem cell self-renewal in vitro at lower concentrations than that required for Oct4 while alleviating the ordinary requirement for the cytokine LIF. At still lower levels of the fusion, LIF dependence was restored. We conclude that the necessary and sufficient function of Oct4 in promoting pluripotency is to activate specific target genes.


Mammalian Genome | 2002

Identification and characterization of a novel murine beta-defensin-related gene

Gillian M. Morrison; Mark Rolfe; Fiona Kilanowski; Sally H. Cross; Julia R. Dorin

Beta-defensins comprise a family of cationic peptides, which are predominately expressed at epithelial surfaces and have a broad-range antimicrobial activity. We have assembled two BAC-based contigs from the chromosomal region 8A4 that contain the murine defensins, and we have mapped six reported beta-defensin genes. In addition, we have isolated and functionally characterized a novel beta-defensin gene that deviates from the canonical six cysteine motif present in the mature functional peptide of all other beta-defensins. This defensin-related gene (Defr1) is most highly expressed in testis and heart. The genomic organization is highly similar to Defb3, 4, 5, and 6, and the exon 1 sequence is very highly conserved. A synthetic Defr1 peptide displayed antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Burkholderia cepacia. The antimicrobial activity of Defr1 against S. aureus, E.coli, and B. cepacia was found to be reduced in raised concentration of NaCl, but its action against P. aeruginosa was independent of NaCl concentration. This is the first report of a functional beta defensin that lacks one of the conserved cysteine residues in its predicted mature peptide. This study has major implications for the structure and functions of these important host defense molecules.


The EMBO Journal | 2015

Convergence of cMyc and β‐catenin on Tcf7l1 enables endoderm specification

Gillian M. Morrison; Roberta Scognamiglio; Andreas Trumpp; Austin Smith

The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β‐catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and β‐catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild‐type cells, cMyc contributes by reducing Tcf7l1 mRNA, while β‐catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/β‐catenin‐Tcf7l1‐FoxA2 axis reveals a de‐repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho‐logical contexts.


Current protocols in stem cell biology | 2009

Differentiation of Embryonic Stem Cells into Anterior Definitive Endoderm

Alessandra Livigni; Santiago Nahuel Villegas; Ifigenia Oikonomopoulou; Afifah Rahman; Gillian M. Morrison; Joshua M. Brickman

Anterior definitive endoderm (ADE) is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other visceral organs. Here we describe a method for the differentiation of mouse embryonic stem (ES) cells to endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (aggregation or embryoid body) culture and in a serum-free adherent monolayer culture. Purified ES cell-derived ADE cells appear committed to endodermal fates and can undergo further differentiation in vitro towards liver and pancreas with enhanced efficiency.

Collaboration


Dive into the Gillian M. Morrison's collaboration.

Top Co-Authors

Avatar

Julia R. Dorin

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexei A. Sharov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

A.I Maxwell

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge