Gillian Mary Claire Renshaw
Griffith University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gillian Mary Claire Renshaw.
The Journal of Experimental Biology | 2004
Göran E. Nilsson; Gillian Mary Claire Renshaw
SUMMARY Especially in aquatic habitats, hypoxia can be an important evolutionary driving force resulting in both convergent and divergent physiological strategies for hypoxic survival. Examining adaptations to anoxic/hypoxic survival in hypoxia-tolerant animals may offer fresh ideas for the treatment of hypoxia-related diseases. Here, we summarise our present knowledge of two fishes that have evolved to survive hypoxia under very different circumstances. The crucian carp (Carassius carassius) is of particular interest because of its extreme anoxia tolerance. During the long North European winter, it survives for months in completely oxygen-deprived freshwater habitats. The crucian carp also tolerates a few days of anoxia at room temperature and, unlike anoxia-tolerant freshwater turtles, it is still physically active in anoxia. Moreover, the crucian carp does not appear to reduce neuronal ion permeability during anoxia and may primarily rely on more subtle neuromodulatory mechanisms for anoxic metabolic depression. The epaulette shark (Hemiscyllium ocellatum) is a tropical marine vertebrate. It lives on shallow reef platforms that repeatedly become cut off from the ocean during periods of low tides. During nocturnal low tides, the water [O2] can fall by 80% due to respiration of the coral and associated organisms. Since the tides become lower and lower over a period of a few days, the hypoxic exposure during subsequent low tides will become progressively longer and more severe. Thus, this shark is under a natural hypoxic preconditioning regimen. Interestingly, hypoxic preconditioning lowers its metabolic rate and its critical PO2. Moreover, repeated anoxia appears to stimulate metabolic depression in an adenosine-dependent way.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2002
Matthew H. Routley; Göran E. Nilsson; Gillian Mary Claire Renshaw
The majority of vertebrates are not tolerant to hypoxia but epaulette sharks (Hemiscyllium ocellatum) living on shallow reef platforms appear to tolerate hypoxic periods during tidal fluctuations. The effects of progressive hypoxia on the metabolic and ventilatory responses of these elasmobranchs were examined in a closed respirometer. In order to determine whether repeated exposure to hypoxia primes these sharks to alter their metabolism, one group of sharks was exposed to repeated sub-lethal hypoxia, at 5% of air saturation, prior to respirometry. In response to falling oxygen concentration [O(2)], the epaulette shark increased its ventilatory rate and maintained its O(2) consumption rate (VO(2)) down to 2.2 mg O(2) l(-1) at 25 degrees C. This is the lowest critical [O(2)] ([O(2)](crit)) ever measured for any elasmobranch. After reaching the [O(2)](crit), the shark remained in the respirometer for a further 4-5 h of progressive hypoxia. Only after the [O(2)] fell to 1.0 mg l(-1) was there a decrease in the ventilatory rate followed by a rise in blood lactate levels, indicating that the epaulette shark responds to severe hypoxia by entering a phase of metabolic and ventilatory depression. Interestingly, hypoxia tolerance was dynamic because hypoxic pre-conditioning lowered the VO(2) of the epaulette shark by 29%, which resulted in a significantly reduced [O(2)](crit) (1.7 mg O(2) l(-1)), revealing that hypoxic pre-conditioning elicits an enhanced physiological response to hypoxia.
Fems Immunology and Medical Microbiology | 2006
Nic West; David B. Pyne; Gillian Mary Claire Renshaw; Allan W. Cripps
Abstract This review examines the question of whether exercise can be used as an experimental model to further our understanding of innate antimicrobial peptides and proteins (AMPs) and their role in susceptibility to infection at mucosal surfaces. There is strong evidence to suggest that AMPs, in combination with cellular and physical factors, play an important role in preventing infection. Although AMPs act directly on microorganisms, there is increasing recognition that they also exert their protective effect via immunomodulatory mechanisms, especially in noninflammatory conditions. Further studies that manipulate physiologically relevant concentrations of AMPs are required to shed light on the role they play in reducing susceptibility to infection. Evidence shows that in various form prolonged and/or exhaustive exercise is a potent modulator of the immune system, which can either sharpen or blunt the immune response to pathogens. The intensity and duration of exercise can be readily controlled in experimental settings to manipulate the degree of physical stress. This would allow for an investigation into a potential dose–response effect between exercise and AMPs. In addition, the use of controlled exercise could provide an experimental model by which to examine whether changes in the concentration of AMPs alters susceptibility to illness.
Comparative Biochemistry and Physiology B | 2002
Gillian Mary Claire Renshaw; Christopher B. Kerrisk; Göran E. Nilsson
The epaulette shark (Hemiscyllium ocellatum) is among the few vertebrates that can tolerate extreme hypoxia for prolonged periods and, as shown here, anoxia. We examined how anoxia affected this sharks level of responsiveness, concentration of brain ATP and adenosine -- an endogenous neuronal depressant. In addition, we investigated how these variables were affected by aminophylline, an adenosine receptor antagonist. Epaulette sharks placed in an anoxic environment (<0.02 mg O2 l(-1)) lost their righting reflex after 46.3 +/- 2.8 min, but immediately regained vigilance upon return to normoxia. Then 24 h later, the same sharks were injected with either saline or aminophylline (30 mg kg(-1)) in saline and re-exposed to anoxia. In this second anoxic episode, controls sharks showed a 56% decrease in the time taken to lose their righting reflex but maintained their brain ATP levels; conversely, aminophylline-treated epaulette sharks displayed a 46% increase in the time to loss of righting reflex and had significantly lower brain ATP levels. Since anoxia also caused a 3.5-fold increase in brain adenosine levels, these results suggest that adenosine receptor activation had a pre-emptive role in maintaining brain ATP levels during anoxia. Perhaps because adenosine receptor activation initiates metabolic depression, indicated by the early loss of responsiveness (righting reflex), such a mechanism would serve to reduce ATP consumption and maintain brain ATP levels.
Journal of Experimental Zoology | 1998
Graham Wise; Jamin Mulvey; Gillian Mary Claire Renshaw
The epaulette shark, Hemiscyllium ocellatum, is a tropical reef shark that can live in an environment with cyclic periods of low oxygen concentration, suggesting that it has a well-developed capacity for anaerobic metabolism. Most investigations of hypoxia-tolerant teleosts and reptiles have focused on species that inhabit cold environments. This study was carried out on a tropical reef shark in order to determine whether similar strategies for hypoxia survival are used at higher environmental temperatures. We studied the effects of a single exposure to mild hypoxia and cyclic exposure to extreme hypoxia on blood-lactate concentration and key indicators of neurological function. The basal blood-lactate concentration for the epaulette shark was determined as 0.37 mM and showed a graded increase during hypoxia. After a single exposure to mild hypoxia (20% of normoxia for 4 h), the mean blood-lactate level rose to 3.07 mM (P < 0.01). After cyclic exposure to extreme hypoxia (eight repetitions of a 120-min exposure at 5% of normoxia), there was a rise in mean blood-lactate concentration to 5.43 mM (P < 0.0001). During both hypoxic regimens, there were no observed changes in key indicators of neurological function. We conclude that the epaulette shark is tolerant to both mild hypoxia and to cyclic exposure to extreme hypoxia.
Neuroreport | 1999
Gillian Mary Claire Renshaw; Susan E. Dyson
Epaulette sharks inhabiting reef platforms are exposed to hypoxic and hyperoxic cycles. The adaptive mechanisms used to prevent neurological damage during these cycles have not been examined. Nitric oxide has a neuroprotective role in some hypoxia-tolerant species. We examined epaulette brains following a severe experimental hypoxic regimen (0.39 mgO2/l for 2 h) and compared nitric oxide synthase (NOS) expression with that in normoxic controls using NADPH-diaphorase staining. Intense NOS activity occurred in microvasculature following exposure to a severely hypoxic environment in contrast to the low levels seen in controls. We established for the first time that the epaulette shark was hypoxia-tolerant because there was no delayed phase of neuronal apoptosis. Enhanced NOS production in response to hypoxia may cause vasodilation, which would maintain the appropriate metabolic environment for continued neuronal survival during exposure to hypoxia.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012
Gillian Mary Claire Renshaw; Ania K. Kutek; Gary D. Grant; Shailendra Anoopkumar-Dukie
Current fishing practices and habitat degradation in most of the worlds oceans pose significant threats to marine fish including elasmobranchs. The accurate prediction of survival probability for elasmobranchs subjected to prolonged immobilisation and diminished oxygen availability during capture and a vulnerable state post-release, is reliant on selecting a reliable set of biomarkers to profile as well as using them to design pre-release interventions which minimise elasmobranch death. The purpose of this review is: i) to make a case for the need to develop new biomarkers to use in conjunction with blood chemistry; ii) to briefly present the survival strategies used by other vertebrates subjected to diminished oxygen iii) to discuss new approaches to forecasting the effect that altered physiological and biochemical markers have on long-term survival with a particular emphasis on oxidative stress, the adenylate energy charge, heat shock protein expression and the capacity for repair, so that a more detailed profile of the qualities of elasmobranch survivorship can be constructed. In addition, the review will discuss the relevance of biomarkers to field samples as well as their incorporation into laboratory based research, aimed at providing physiological and biochemical data to inform conservation management.
The Journal of Experimental Biology | 2004
Kåre-Olav Stensløkken; Lena Sundin; Gillian Mary Claire Renshaw; Göran E. Nilsson
SUMMARY Coral reef platforms may become hypoxic at night during low tide. One animal in that habitat, the epaulette shark (Hemiscyllium ocellatum), survives hours of severe hypoxia and at least one hour of anoxia. Here, we examine the branchial effects of severe hypoxia (<0.3 mg oxygen l–1 for 20 min in anaesthetized epaulette shark), by measuring ventral and dorsal aortic blood pressure (PVA and PDA), heart rate (fh), and observing gill microcirculation using epi-illumination microscopy. Hypoxia induced a flow of blood in two parallel blood vessels, termed longitudinal vessels, in the outer borders of the free tip of the gill filament. Hypoxia also induced significant falls in fh, PVA and PDA, and a biphasic change in ventilation frequency (increase followed by decrease). Adenosine injection (1μ mol kg–1) also initiated blood flow in the longitudinal vessels, in addition to significant drops in PVA, PDA and fh, and a biphasic response in ventilation frequency (decrease followed by increase) indicating that adenosine influences ventilation. Aminophylline (10 mg kg–1), an A1 and A2 adenosine receptor antagonist, blocked the effects of adenosine injection, and also significantly reduced blood flow in the longitudinal vessels during hypoxia. In the second part of the study, we examined the cholinergic influence on the cardiovascular circulation during severe hypoxia (<0.3 mg l–1) using antagonists against muscarinic (atropine 2 mg kg–1) and nicotinic (tubocurarine 5 mg kg–1) receptors. Injection of acetylcholine (ACh; 1μ mol kg–1) into the ventral aorta caused a marked fall in fh, a large increase in PVA, but small changes in PDA (suggesting increased Rgill). Atropine was able to inhibit the branchial vascular responses to ACh but not the hypoxic bradycardia, suggesting the presence of muscarinic receptors on the heart and gill vasculature, and that the hypoxia induced bradycardia is of non-cholinergic origin. The results suggest that adenosine mediates increases in the arterio–venous circulation in the gill during hypoxia. This may serve to increase blood supply to heart and gill tissue.
Neuroscience Letters | 2000
Jamin Mulvey; Gillian Mary Claire Renshaw
Reduced oxidative demand or neuronal hypometabolism is a neuroprotective strategy used by several anoxia and hypoxia-tolerant species. The epaulette shark, Hemiscyllium ocellatum inhabits shallow reef platforms that can become hypoxic. Hypoxic pre-conditioning (eight cycles of 0.34 mg O(2)/l for 120 min, 12 h apart) was used to determine whether a reduction in oxidative metabolism could be elicited in the epaulette shark brain. Hypoxic pre-conditioning resulted in a significant overall reduction in oxidative activity in coronal sections of the brainstem, but key nuclei displayed heterogeneous levels of oxidative metabolism. Motor nuclei had significantly lower levels of oxidative activity while sensory nuclei did not. The epaulette sharks ability to enter this state of hypometabolism in response to hypoxic pre-conditioning revealed a neuroprotective mechanism, which would not only reduce neuronal damage during hypoxic exposure but also minimise re-oxygenation injury.
Fish Physiology and Biochemistry | 2014
Lotta Leveelahti; Kalle T. Rytkönen; Gillian Mary Claire Renshaw; Mikko Nikinmaa
It is not known whether changes in antioxidant levels always occur in fish in response to the oxidative stress that usually accompanies a hypoxic challenge. The studies of antioxidant responses to hypoxia in fish have mostly focused on very anoxia-tolerant species and indicate that there is an enhancement of antioxidant defenses. Here we present new data on redox-active antioxidants from three species, which range in their tolerance to hypoxia: the epaulette shark, threespine stickleback, and rainbow trout, together with a compilation of results from other studies that have measured oxidative stress parameters in hypoxia-exposed fish. The results suggest that in general, fish do not show an increase in redox-active antioxidant defense in response to oxidative stress associated with hypoxia. Rather, the changes in antioxidant defenses during hypoxia are very much species- and tissue-specific and are not linked to the level of hypoxia tolerance of the fish species.