Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gina Chia-Yi Chu is active.

Publication


Featured researches published by Gina Chia-Yi Chu.


Clinical Cancer Research | 2014

miR-409-3p/-5p promotes tumorigenesis, epithelial to mesenchymal transition and bone metastasis of human prostate cancer

Sajni Josson; Murali Gururajan; Peizhen Hu; Chen Shao; Gina Chia-Yi Chu; Haiyen E. Zhau; Chunyan Liu; Kaiqin Lao; Chia-Lun Lu; Yi-Tsung Lu; Jake Lichterman; Srinivas Nandana; Quanlin Li; André Rogatko; Dror Berel; Edwin M. Posadas; Ladan Fazli; Dhruv Sareen; Leland W.K. Chung

Purpose: miR-409-3p/-5p is a miRNA expressed by embryonic stem cells, and its role in cancer biology and metastasis is unknown. Our pilot studies demonstrated elevated miR-409-3p/-5p expression in human prostate cancer bone metastatic cell lines; therefore, we defined the biologic impact of manipulation of miR-409-3p/-5p on prostate cancer progression and correlated the levels of its expression with clinical human prostate cancer bone metastatic specimens. Experimental Design: miRNA profiling of a prostate cancer bone metastatic epithelial-to-mesenchymal transition (EMT) cell line model was performed. A Gleason score human tissue array was probed for validation of specific miRNAs. In addition, genetic manipulation of miR-409-3p/-5p was performed to determine its role in tumor growth, EMT, and bone metastasis in mouse models. Results: Elevated expression of miR-409-3p/-5p was observed in bone metastatic prostate cancer cell lines and human prostate cancer tissues with higher Gleason scores. Elevated miR-409-3p expression levels correlated with progression-free survival of patients with prostate cancer. Orthotopic delivery of miR-409-3p/-5p in the murine prostate gland induced tumors where the tumors expressed EMT and stemness markers. Intracardiac inoculation (to mimic systemic dissemination) of miR-409-5p inhibitor–treated bone metastatic ARCaPM prostate cancer cells in mice led to decreased bone metastasis and increased survival compared with control vehicle–treated cells. Conclusion: miR-409-3p/-5p plays an important role in prostate cancer biology by facilitating tumor growth, EMT, and bone metastasis. This finding bears particular translational importance as miR-409-3p/-5p appears to be an attractive biomarker and/or possibly a therapeutic target to treat bone metastatic prostate cancer. Clin Cancer Res; 20(17); 4636–46. ©2014 AACR.


Clinical Cancer Research | 2014

miR-154* and miR-379 in the DLK1-DIO3 MicroRNA Mega-Cluster Regulate Epithelial to Mesenchymal Transition and Bone Metastasis of Prostate Cancer

Murali Gururajan; Sajni Josson; Gina Chia-Yi Chu; Chia-Lun Lu; Yi-Tsung Lu; Christopher L. Haga; Haiyen E. Zhau; Chunyan Liu; Jake Lichterman; Peng Duan; Edwin M. Posadas; Leland W.K. Chung

Purpose: MicroRNAs in the delta-like 1 homolog–deiodinase, iodothyronine 3 (DLK1-DIO3) cluster have been shown to be critical for embryonic development and epithelial to mesenchymal transition (EMT). DLK1-DIO3 cluster miRNAs are elevated in the serum of patients with metastatic cancer. However, the biologic functions of these miRNAs in the EMT and metastasis of cancer cells are poorly understood. We previously demonstrated the oncogenic and metastatic role of miR-409-3p/5p, a member of this cluster, in prostate cancer. In this study, we defined the role of miR-154* and miR-379, two key members of this cluster, in prostate cancer progression and bone metastasis in both cell line models and clinical specimens. Experimental Design: Genetic manipulation of miR-154* and miR-379 was performed to determine their role in tumor growth, EMT, and bone metastasis in mouse models. We determined the expression of miR-154* in prostate cancer clinical samples and bone metastasis samples using in situ hybridization and quantum dot labeling. Results: Elevated expression of miR-154* and miR-379 was observed in bone metastatic prostate cancer cell lines and tissues, and miR-379 expression correlated with progression-free survival of patients with prostate cancer. Intracardiac inoculation (to mimic systemic dissemination) of miR-154* inhibitor-treated bone metastatic ARCaPM prostate cancer cells in mice led to decreased bone metastasis and increased survival. Conclusion: miR-154* and miR-379 play important roles in prostate cancer biology by facilitating tumor growth, EMT, and bone metastasis. This finding has particular translational importance because miRNAs in the DLK1-DIO3 cluster can be attractive biomarkers and possible therapeutic targets to treat bone metastatic prostate cancer. Clin Cancer Res; 20(24); 6559–69. ©2014 AACR.


Endocrine-related Cancer | 2014

RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization

Gina Chia-Yi Chu; Haiyen E. Zhau; Ruoxiang Wang; Andre Rogatko; Xu Feng; Majd Zayzafoon; Youhua Liu; Mary C. Farach-Carson; Sungyong You; Jayoung Kim; Michael R. Freeman; Leland W.K. Chung

Prostate cancer (PCa) metastasis to bone is lethal and there is no adequate animal model for studying the mechanisms underlying the metastatic process. Here, we report that receptor activator of NF-κB ligand (RANKL) expressed by PCa cells consistently induced colonization or metastasis to bone in animal models. RANK-mediated signaling established a premetastatic niche through a feed-forward loop, involving the induction of RANKL and c-Met, but repression of androgen receptor (AR) expression and AR signaling pathways. Site-directed mutagenesis and transcription factor (TF) deletion/interference assays identified common TF complexes, c-Myc/Max, and AP4 as critical regulatory nodes. RANKL–RANK signaling activated a number of master regulator TFs that control the epithelial-to-mesenchymal transition (Twist1, Slug, Zeb1, and Zeb2), stem cell properties (Sox2, Myc, Oct3/4, and Nanog), neuroendocrine differentiation (Sox9, HIF1α, and FoxA2), and osteomimicry (c-Myc/Max, Sox2, Sox9, HIF1α, and Runx2). Abrogating RANK or its downstream c-Myc/Max or c-Met signaling network minimized or abolished skeletal metastasis in mice. RANKL-expressing LNCaP cells recruited and induced neighboring non metastatic LNCaP cells to express RANKL, c-Met/activated c-Met, while downregulating AR expression. These initially non-metastatic cells, once retrieved from the tumors, acquired the potential to colonize and grow in bone. These findings identify a novel mechanism of tumor growth in bone that involves tumor cell reprogramming via RANK–RANKL signaling, as well as a form of signal amplification that mediates recruitment and stable transformation of non-metastatic bystander dormant cells.


PLOS ONE | 2011

Multiplexed quantum dot labeling of activated c-Met signaling in castration-resistant human prostate cancer.

Peizhen Hu; Gina Chia-Yi Chu; Guodong Zhu; Hua Yang; Daniel Luthringer; Gail S. Prins; Fouad K. Habib; Yuzhuo Wang; Ruoxiang Wang; Leland W.K. Chung; Haiyen E. Zhau

The potential application of multiplexed quantum dot labeling (MQDL) for cancer detection and prognosis and monitoring therapeutic responses has attracted the interests of bioengineers, pathologists and cancer biologists. Many published studies claim that MQDL is effective for cancer biomarker detection and useful in cancer diagnosis and prognosis, these studies have not been standardized against quantitative biochemical and molecular determinations. In the present study, we used a molecularly characterized human prostate cancer cell model exhibiting activated c-Met signaling with epithelial to mesenchymal transition (EMT) and lethal metastatic progression to bone and soft tissues as the gold standard, and compared the c-Met cell signaling network in this model, in clinical human prostate cancer tissue specimens and in a castration-resistant human prostate cancer xenograft model. We observed c-Met signaling network activation, manifested by increased phosphorylated c-Met in all three. The downstream survival signaling network was mediated by NF-κB and Mcl-1 and EMT was driven by receptor activator of NF-κB ligand (RANKL), at the single cell level in clinical prostate cancer specimens and the xenograft model. Results were confirmed by real-time RT-PCR and western blots in a human prostate cancer cell model. MQDL is a powerful tool for assessing biomarker expression and it offers molecular insights into cancer progression at both the cell and tissue level with high degree of sensitivity.


Cancer and Metastasis Reviews | 2014

RANK-mediated signaling network and cancer metastasis

Gina Chia-Yi Chu; Leland W.K. Chung

Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique feed forward mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the feed forward mechanism involving RANKL, c-Met, transcription factors, and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases.


Cancer Letters | 2016

Regulation of prostate cancer progression by the tumor microenvironment

Stephen L. Shiao; Gina Chia-Yi Chu; Leland W.K. Chung

Prostate cancer remains the most frequently diagnosed cancer in men in North America, and despite recent advances in treatment patients with metastatic disease continue to have poor five-year survival rates. Recent studies in prostate cancer have revealed the critical role of the tumor microenvironment in the initiation and progression to advanced disease. Experimental data have uncovered a reciprocal relationship between the cells in the microenvironment and malignant tumor cells in which early changes in normal tissue microenvironment can promote tumorigenesis and in turn tumor cells can promote further pro-tumor changes in the microenvironment. In the tumor microenvironment, the presence of persistent immune infiltrates contributes to the recruitment and reprogramming of other non-immune stromal cells including cancer-associated fibroblasts and a unique recently identified population of metastasis-initiating cells (MICs). These MICs, which can also be found as part of the circulating tumor cell (CTC) population in PC patients, promote cancer cell transformation, enhance metastatic potential and confer therapeutic resistance. MICs act can on other cells within the tumor microenvironment in part by secreting exosomes that reprogram adjacent stromal cells to create a more favorable tumor microenvironment to support continued cancer growth and progression. We review here the current data on the intricate relationship between inflammation, reactive stroma, tumor cells and disease progression in prostate cancer.


Biomaterials | 2015

Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor

Jason Boyang Wu; Changhong Shi; Gina Chia-Yi Chu; Qijin Xu; Yi Zhang; Qinlong Li; John S. Yu; Haiyen E. Zhau; Leland W.K. Chung

Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.


Asian Journal of Urology | 2016

Cultured circulating tumor cells and their derived xenografts for personalized oncology

Ruoxiang Wang; Gina Chia-Yi Chu; Stefan Mrdenovic; Alagappan Annamalai; Andrew Eugene Hendifar; Nicholas N. Nissen; James Tomlinson; Michael Lewis; Nallasivam Palanisamy; Hsian-Rong Tseng; Edwin M. Posadas; Michael R. Freeman; Stephen J. Pandol; Haiyen E. Zhau; Leland W.K. Chung

Recent cancer research has demonstrated the existence of circulating tumor cells (CTCs) in cancer patients blood. Once identified, CTC biomarkers will be invaluable tools for clinical diagnosis, prognosis and treatment. In this review, we propose ex vivo culture as a rational strategy for large scale amplification of the limited numbers of CTCs from a patient sample, to derive enough CTCs for accurate and reproducible characterization of the biophysical, biochemical, gene expressional and behavioral properties of the harvested cells. Because of tumor cell heterogeneity, it is important to amplify all the CTCs in a blood sample for a comprehensive understanding of their role in cancer metastasis. By analyzing critical steps and technical issues in ex vivo CTC culture, we developed a cost-effective and reproducible protocol directly culturing whole peripheral blood mononuclear cells, relying on an assumed survival advantage in CTCs and CTC-like cells over the normal cells to amplify this specified cluster of cancer cells.


Oncotarget | 2015

SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer

Murali Gururajan; Karen A. Cavassani; Margarit Sievert; Peng Duan; Jake Lichterman; Jen-Ming Huang; Bethany N. Smith; Sungyong You; Srinivas Nandana; Gina Chia-Yi Chu; Sheldon R. Mink; Sajni Josson; Chunyan Liu; Matteo Morello; Lawrence W. Jones; Jayoung Kim; Michael R. Freeman; Neil A. Bhowmick; Haiyen E. Zhau; Leland W.K. Chung; Edwin M. Posadas

FYN is a SRC family kinase (SFK) that has been shown to be up-regulated in human prostate cancer (PCa) tissues and cell lines. In this study, we observed that FYN is strongly up-regulated in human neuroendocrine PCa (NEPC) tissues and xenografts, as well as cells derived from a NEPC transgenic mouse model. In silico analysis of FYN expression in prostate cancer cell line databases revealed an association with the expression of neuroendocrine (NE) markers such as CHGA, CD44, CD56, and SYP. The loss of FYN abrogated the invasion of PC3 and ARCaPM cells in response to MET receptor ligand HGF. FYN also contributed to the metastatic potential of NEPC cells in two mouse models of visceral metastasis with two different cell lines (PC3 and TRAMPC2-RANKL). The activation of MET appeared to regulate neuroendocrine (NE) features as evidenced by increased expression of NE markers in PC3 cells with HGF. Importantly, the overexpression of FYN protein in DU145 cells was directly correlated with the increase of CHGA. Thus, our data demonstrated that the neuroendocrine differentiation that occurs in PCa cells is, at least in part, regulated by FYN kinase. Understanding the role of FYN in the regulation of NE markers will provide further support for ongoing clinical trials of SFK and MET inhibitors in castration-resistant PCa patients.


Translational Andrology and Urology | 2015

Prostate cancer metastasis: roles of recruitment and reprogramming, cell signal network and three-dimensional growth characteristics

Shabnam Ziaee; Gina Chia-Yi Chu; Jen-Ming Huang; Shirly Sieh; Leland W.K. Chung

Prostate cancer (PCa) metastasizes to bone and soft tissues, greatly decreasing quality of life, causing bone pain, skeletal complications, and mortality in PCa patients. While new treatment strategies are being developed, the molecular and cellular basis of PCa metastasis and the “cross-talk” between cancer cells and their microenvironment and crucial cell signaling pathways need to be successfully dissected for intervention. In this review, we introduce a new concept of the mechanism of PCa metastasis, the recruitment and reprogramming of bystander and dormant cells (DCs) by a population of metastasis-initiating cells (MICs). We provide evidence that recruited and reprogrammed DCs gain MICs phenotypes and can subsequently metastasize to bone and soft tissues. We show that MICs can also recruit and reprogram circulating tumor cells (CTCs) and this could contribute to cancer cell evolution and the acquisition of therapeutic resistance. We summarize relevant molecular signaling pathways, including androgen receptors (ARs) and their variants and growth factors (GFs) and cytokines that could contribute to the predilection of PCa for homing to bone and soft tissues. To understand the etiology and the biology of PCa and the effectiveness of therapeutic targeting, we briefly summarize the animal and cell models that have been employed. We also report our experience in the use of three-dimensional (3-D) culture and co-culture models to understand cell signaling networks and the use of these attractive tools to conduct drug screening exercises against already-identified molecular targets. Further research into PCa growth and metastasis will improve our ability to target cancer metastasis more effectively and provide better rationales for personalized oncology.

Collaboration


Dive into the Gina Chia-Yi Chu's collaboration.

Top Co-Authors

Avatar

Leland W.K. Chung

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Haiyen E. Zhau

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ruoxiang Wang

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Murali Gururajan

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Edwin M. Posadas

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Michael R. Freeman

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peng Duan

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Srinivas Nandana

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chunyan Liu

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jake Lichterman

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge