Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ginger E. Carney is active.

Publication


Featured researches published by Ginger E. Carney.


Journal of Biological Chemistry | 2005

Two Functional but Noncomplementing Drosophila Tyrosine Decarboxylase Genes DISTINCT ROLES FOR NEURAL TYRAMINE AND OCTOPAMINE IN FEMALE FERTILITY

Shannon H. Cole; Ginger E. Carney; Colleen McClung; Stacey S. Willard; Barbara J. Taylor; Jay Hirsh

The trace biogenic amine tyramine is present in the nervous systems of animals ranging in complexity from nematodes to mammals. Tyramine is synthesized from tyrosine by the enzyme tyrosine decarboxylase (TDC), a member of the aromatic amino acid family, but this enzyme has not been identified in Drosophila or in higher animals. To further clarify the roles of tyramine and its metabolite octopamine, we have cloned two TDC genes from Drosophila melanogaster, dTdc1 and dTdc2. Although both gene products have TDC activity in vivo, dTdc1 is expressed nonneurally, whereas dTdc2 is expressed neurally. Flies with a mutation in dTdc2 lack neural tyramine and octopamine and are female sterile due to egg retention. Although other Drosophila mutants that lack octopamine retain eggs completely within the ovaries, dTdc2 mutants release eggs into the oviducts but are unable to deposit them. This specific sterility phenotype can be partially rescued by driving the expression of dTdc2 in a dTdc2-specific pattern, whereas driving the expression of dTdc1 in the same pattern results in a complete rescue. The disparity in rescue efficiencies between the ectopically expressed Tdc genes may reflect the differential activities of these gene products. The egg retention phenotype of the dTdc2 mutant and the phenotypes associated with ectopic dTdc expression contribute to a model in which octopamine and tyramine have distinct and separable neural activities.


Journal of Insect Physiology | 2012

Ecdysone signaling in adult Drosophila melanogaster

Christoph C. Schwedes; Ginger E. Carney

The steroid hormone 20-hydroxyecdysone and its EcR/USP receptor are vital during arthropod development for coordinating molting and metamorphosis. Traditionally, little attention has been given to potential post-developmental functions for this hormone signaling system. However, recent studies in Drosophila melanogaster indicate that the hormone and receptor are present and active in adults and that mutations decreasing hormone or receptor levels affect diverse processes such as reproduction, behavior, stress resistance, and lifespan. We review the current state of knowledge regarding adult hormone production and titers and discuss receptor expression and activity in order to identify potential mechanisms which explain the observed mutant phenotypes. Finally, we describe future research directions focused on identifying isoform-specific functions of EcR, distinguishing effects from EcR/USP gene activation and repression, and determining how ecdysone signaling impacts different tissue types.


BMC Genomics | 2009

A microarray analysis of sex- and gonad-biased gene expression in the zebrafish: Evidence for masculinization of the transcriptome

Clayton M. Small; Ginger E. Carney; Qianxing Mo; Marina Vannucci; Adam Jones

BackgroundIn many taxa, males and females are very distinct phenotypically, and these differences often reflect divergent selective pressures acting on the sexes. Phenotypic sexual dimorphism almost certainly reflects differing patterns of gene expression between the sexes, and microarray studies have documented widespread sexually dimorphic gene expression. Although the evolutionary significance of sexual dimorphism in gene expression remains unresolved, these studies have led to the formulation of a hypothesis that male-driven evolution has resulted in the masculinization of animal transcriptomes. Here we use a microarray assessment of sex- and gonad-biased gene expression to test this hypothesis in zebrafish.ResultsBy using zebrafish Affymetrix microarrays to compare gene expression patterns in male and female somatic and gonadal tissues, we identified a large number of genes (5899) demonstrating differences in transcript abundance between male and female Danio rerio. Under conservative statistical significance criteria, all sex-biases in gene expression were due to differences between testes and ovaries. Male-enriched genes were more abundant than female-enriched genes, and expression bias for male-enriched genes was greater in magnitude than that for female-enriched genes. We also identified a large number of genes demonstrating elevated transcript abundance in testes and ovaries relative to male body and female body, respectively.ConclusionOverall our results support the hypothesis that male-biased evolutionary pressures have resulted in male-biased patterns of gene expression. Interestingly, our results seem to be at odds with a handful of other microarray-based studies of sex-specific gene expression patterns in zebrafish. However, ours was the only study designed to address this specific hypothesis, and major methodological differences among studies could explain the discrepancies. Regardless, all of these studies agree that transcriptomic sex differences in D. rerio are widespread despite the apparent absence of heterogamety. These differences likely make important contributions to phenotypic sexual dimorphism in adult zebrafish; thus, from an evolutionary standpoint, the precise roles of sex-specific selection and sexual conflict in the evolution of sexually dimorphic gene expression are very important. The results of our study and others like it set the stage for further work aimed at directly addressing this exciting issue in comparative genomics.


BMC Genomics | 2007

A rapid genome-wide response to Drosophila melanogaster social interactions

Ginger E. Carney

BackgroundThe actions and reactions integral to mate recognition and reproduction are examples of multifaceted behaviors for which we are only beginning to comprehend the underlying genetic and molecular complexity. I hypothesized that social interactions, such as those involved in reproductive behaviors, would lead to immediate and assayable changes in gene expression. Such changes may have important effects on individual reproductive success and fitness through alterations in physiology or via short-term or long-term changes in nervous system function.ResultsI used Affymetrix Drosophila Genome arrays to identify genes whose expression profiles would change rapidly due to the social interactions occurring during Drosophila melanogaster courtship. I identified 43 loci with significant expression profile changes during a 5-min exposure period. These results indicate that social interactions can lead to extremely rapid changes in mRNA abundance.ConclusionThe known functions of the up-regulated genes identified in this study include nervous system signaling and spermatogenesis, while the majority of down-regulated loci are implicated in immune signaling. Expression of two of the up-regulated genes, Odorant-binding protein 99b (Obp99b) and female-specific independent of transformer (fit), is controlled by the Drosophila sex-determination gene hierarchy, which regulates male and female mating behaviors and somatic differentiation. Therefore, additional identified loci may represent other long-elusive targets of Drosophila sex-determination genes.


Journal of Insect Physiology | 2011

Ecdysone receptor expression and activity in adult Drosophila melanogaster.

Christoph C. Schwedes; Siddharth Tulsiani; Ginger E. Carney

Disrupting components of the ecdysone/EcR/USP signaling pathway in insects leads to morphological defects and developmental arrest. In adult Drosophila melanogaster decreased EcR function affects fertility, lifespan, behavior, learning, and memory; however we lack a clear understanding of how EcR/USP expression and activity impacts these phenotypes. To shed light on this issue, we characterized the wild-type expression patterns and activity of EcR/USP in individual tissues during early adult life. EcR and usp were expressed in numerous adult tissues, but receptor activity varied depending on tissue type and adult age. Receptor activity did not detectably change in response to mating status, environmental stress, ecdysone treatment or gender but is reduced when a constitutively inactive ecdysone receptor is present. Since only a subset of adult tissues expressing EcR and usp contain active receptors, it appears that an important adult function of EcR/USP in some tissues may be repression of genes containing EcREs.


BMC Genomics | 2010

Mating alters gene expression patterns in Drosophila melanogaster male heads

Lisa L. Ellis; Ginger E. Carney

BackgroundBehavior is a complex process resulting from the integration of genetic and environmental information. Drosophila melanogaster rely on multiple sensory modalities for reproductive success, and mating causes physiological changes in both sexes that affect reproductive output or behavior. Some of these effects are likely mediated by changes in gene expression. Courtship and mating alter female transcript profiles, but it is not known how mating affects male gene expression.ResultsWe used Drosophila genome arrays to identify changes in gene expression profiles that occur in mated male heads. Forty-seven genes differed between mated and control heads 2 hrs post mating. Many mating-responsive genes are highly expressed in non-neural head tissues, including an adipose tissue called the fat body. One fat body-enriched gene, female-specific independent of transformer (fit), is a downstream target of the somatic sex-determination hierarchy, a genetic pathway that regulates Drosophila reproductive behaviors as well as expression of some fat-expressed genes; three other mating-responsive loci are also downstream components of this pathway. Another mating-responsive gene expressed in fat, Juvenile hormone esterase (Jhe), is necessary for robust male courtship behavior and mating success.ConclusionsOur study demonstrates that mating causes changes in male head gene expression profiles and supports an increasing body of work implicating adipose signaling in behavior modulation. Since several mating-induced genes are sex-determination hierarchy target genes, additional mating-responsive loci may be downstream components of this pathway as well.


Genetics | 2011

Socially-Responsive Gene Expression in Male Drosophila melanogaster Is Influenced by the Sex of the Interacting Partner

Lisa L. Ellis; Ginger E. Carney

Behavior is influenced by an organisms genes and environment, including its interactions with same or opposite sex individuals. Drosophila melanogaster perform innate, yet socially modifiable, courtship behaviors that are sex specific and require rapid integration and response to multiple sensory cues. Furthermore, males must recognize and distinguish other males from female courtship objects. It is likely that perception, integration, and response to sex-specific cues is partially mediated by changes in gene expression. Reasoning that social interactions with members of either sex would impact gene expression, we compared expression profiles in heads of males that courted females, males that interacted with other males, or males that did not interact with another fly. Expression of 281 loci changes when males interact with females, whereas 505 changes occur in response to male–male interactions. Of these genes, 265 are responsive to encounters with either sex and 240 respond specifically to male–male interactions. Interestingly, 16 genes change expression only when a male courts a female, suggesting that these changes are a specific response to male–female courtship interactions. We supported our hypothesis that socially-responsive genes can function in behavior by showing that egghead (egh) expression, which increases during social interactions, is required for robust male-to-female courtship. We predict that analyzing additional socially-responsive genes will give us insight into genes and neural signaling pathways that influence reproductive and other behavioral interactions.


BMC Genomics | 2008

Loss of p24 function in Drosophila melanogaster causes a stress response and increased levels of NF-κB-regulated gene products

Kara A. Boltz; Ginger E. Carney

BackgroundSecretory and transmembrane proteins traverse the endoplasmic reticulum (ER) and Golgi compartments for final maturation prior to reaching their functional destinations. Members of the p24 protein family, which are transmembrane constituents of ER and Golgi-derived transport vesicles, function in trafficking some secretory proteins in yeast and higher eukaryotes. Yeast p24 mutants have minor secretory defects and induce an ER stress response that likely results from accumulation of proteins in the ER due to disrupted trafficking. We tested the hypothesis that loss of Drosophila melanogaster p24 protein function causes a transcriptional response characteristic of ER stress activation.ResultsWe performed genome-wide profiling experiments on tissues from Drosophila females with a mutation in the p24 gene logjam (loj) and identified changes in message levels for 641 genes. We found that loj mutants have expression profiles consistent with activation of stress responses. Of particular note is our observation that approximately 20% of the loci up regulated in loj mutants are Drosophila immune-regulated genes (DIRGs), many of which are transcriptional targets of NF-κB or JNK signaling pathways.ConclusionThe loj mutant expression profiling data support the hypothesis that loss of p24 function causes a stress response. Genes involved in ameliorating stress, such as those encoding products involved in proteolysis, metabolism and protein folding, are differentially expressed in loj mutants compared to controls. Nearly 20% of the genes with increased message levels in the loj mutant are transcriptional targets of Drosophila NF-κB proteins. Activation of NF-κB transcription factors is the hallmark of an ER stress response called the ER overload response. Therefore, our data are consistent with the hypothesis that Drosophila p24 mutations induce stress, possibly via activation of ER stress response pathways. Because of the molecular and genetic tools available for Drosophila, the fly will be a useful system for investigating the tissue-specific functions of p24 proteins and for determining the how disrupting these molecules causes stress responses in vivo.


PLOS ONE | 2014

Sexual experience enhances Drosophila melanogaster male mating behavior and success.

Sehresh Saleem; Patrick H. Ruggles; Wiley K. Abbott; Ginger E. Carney

Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments.


Developmental Dynamics | 2007

Drosophila melanogaster p24 Genes Have Developmental, Tissue-Specific, and Sex- Specific Expression Patterns and Functions

Kara A. Boltz; Lisa L. Ellis; Ginger E. Carney

Genes encoding members of the p24 family of intracellular trafficking proteins are present throughout animal and plant lineages. However, very little is known about p24 developmental, spatial, or sex‐specific expression patterns or how localized expression affects function. We investigated these problems in Drosophila melanogaster, which contains nine genes encoding p24 proteins. One of these genes, logjam (loj), is expressed in the adult female nervous system and ovaries and is essential for oviposition. Nervous system‐specific expression of loj, but not ovary‐specific expression, rescues the behavioral defect of mutants. The Loj protein localizes to punctate structures in the cellular cytoplasm. These structures colocalize with a marker specific to the intermediate compartment and cis‐Golgi, consistent with experimental evidence from other systems suggesting that p24 proteins function in intracellular transport between the endoplasmic reticulum and Golgi. Our findings reveal that Drosophila p24 transcripts are developmentally and tissue‐specifically expressed. CG31787 is male‐specifically expressed gene that is present during the larval, pupal, and adult stages. Female CG9053 mRNA is limited to the head, whereas males express this gene widely. Together, our studies provide experimental evidence indicating that some p24 genes have sex‐specific expression patterns and tissue‐ and sex‐limited functions. Developmental Dynamics 236:544–555, 2007.

Collaboration


Dive into the Ginger E. Carney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge