Ginny G. Farías
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ginny G. Farías.
Journal of Biological Chemistry | 2008
Waldo Cerpa; Juan A. Godoy; Iván E. Alfaro; Ginny G. Farías; María J. Metcalfe; Rodrigo A. Fuentealba; Christian Bonansco; Nibaldo C. Inestrosa
Wnt signaling is essential for neuronal development and the maintenance of the developing nervous system. Recent studies indicated that Wnt signaling modulates long term potentiation in adult hippocampal slices. We report here that different Wnt ligands are present in hippocampal neurons of rat embryo and adult rat, including Wnt-4, -5a, -7a, and -11. Wnt-7a acts as a canonical Wnt ligand in rat hippocampal neurons, stimulates clustering of presynaptic proteins, and induces recycling and exocytosis of synaptic vesicles as studied by FM dyes. Wnt-3a has a moderate effect on recycling of synaptic vesicles, and no effect of Wnt-1 and Wnt-5a was detected. Electrophysiological analysis on adult rat hippocampal slices indicates that Wnt-7a, but not Wnt-5a, increases neurotransmitter release in CA3-CA1 synapses by decreasing paired pulse facilitation and increasing the miniature excitatory post-synaptic currents frequency. These results indicate that the presynaptic function of rat hippocampal neurons is modulated by the canonical Wnt signaling.
Journal of Biological Chemistry | 2009
Ginny G. Farías; Iván E. Alfaro; Waldo Cerpa; Catalina Grabowski; Juan A. Godoy; Christian Bonansco; Nibaldo C. Inestrosa
During the formation of synapses, specific regions of pre- and postsynaptic cells associate to form a single functional transmission unit. In this process, synaptogenic factors are necessary to modulate pre- and postsynaptic differentiation. In mammals, different Wnt ligands operate through canonical and non-canonical Wnt pathways, and their precise functions to coordinate synapse structure and function in the mature central nervous system are still largely unknown. Here, we studied the effect of different Wnt ligands on postsynaptic organization. We found that Wnt-5a induces short term changes in the clustering of PSD-95, without affecting its total levels. Wnt-5a promotes the recruitment of PSD-95 from a diffuse dendritic cytoplasmic pool to form new PSD-95 clusters in dendritic spines. Moreover, Wnt-5a acting as a non-canonical ligand regulates PSD-95 distribution through a JNK-dependent signaling pathway, as demonstrated by using the TAT-TI-JIP peptide in mature hippocampal neurons. Finally, using adult rat hippocampal slices, we found that Wnt-5a modulates glutamatergic synaptic transmission through a postsynaptic mechanism. Our studies indicate that the Wnt-5a/JNK pathway modulates the postsynaptic region of mammalian synapse directing the clustering and distribution of the physiologically relevant scaffold protein, PSD-95.
The Journal of Neuroscience | 2010
Loreto Cuitino; Juan A. Godoy; Ginny G. Farías; Andrés Couve; Christian Bonansco; Marco Fuenzalida; Nibaldo C. Inestrosa
GABAA receptors (GABAA-Rs) play a significant role in mediating fast synaptic inhibition and it is the main inhibitory receptor in the CNS. The role of Wnt signaling in coordinating synapse structure and function in the mature CNS is poorly understood. In previous studies we found that Wnt ligands can modulate excitatory synapses through remodeling both presynaptic and postsynaptic regions. In this current study we provide evidence for the effect of Wnt-5a on postsynaptic GABAA-Rs. We observed that Wnt-5a induces surface expression and maintenance of this receptor in the neuronal membrane. The evoked IPSC recordings in rat hippocampal slice indicate that Wnt-5a can regulates postsynaptically the hippocampal inhibitory synapses. We found also that Wnt-5a: (a) induces the insertion and clustering of GABAA-Rs in the membrane; (b) increases the amplitude of GABA-currents due exclusively to postsynaptic mechanisms; (c) does not affect the endocytic process, but increases the receptor recycling. Finally, all these effects on the GABAA-Rs are mediated by the activation of calcium/calmodulin-dependent kinase II (CaMKII). Therefore, we postulate that Wnt-5a, by activation of CaMKII, induces the recycling of functional GABAA-Rs on the mature hippocampal neurons.
The Journal of Neuroscience | 2007
Ginny G. Farías; Ana Sofia Valles; Marcela Colombres; Juan A. Godoy; Enrique M. Toledo; Ronald J. Lukas; Francisco J. Barrantes; Nibaldo C. Inestrosa
Nicotinic acetylcholine receptors (nAChRs) contribute significantly to hippocampal function. α7-nAChRs are present in presynaptic sites in hippocampal neurons and may influence transmitter release, but the factors that determine their presynaptic localization are unknown. We report here that Wnt-7a, a ligand active in the canonical Wnt signaling pathway, induces dissociation of the adenomatous polyposis coli (APC) protein from the β-catenin cytoplasmic complex and the interaction of APC with α7-nAChRs in hippocampal neurons. Interestingly, Wnt-7a induces the relocalization of APC to membranes, clustering of APC in neurites, and coclustering of APC with different, presynaptic protein markers. Wnt-7a also increases the number and size of coclusters of α7-nAChRs and APC in presynaptic terminals. These short-term changes in α7-nAChRs occur in the few minutes after ligand exposure and involve translocation to the plasma membrane without affecting total receptor levels. Longer-term exposure to Wnt-7a increases nAChR α7 subunit levels in an APC-independent manner and increases clusters of α7-nAChRs in neurites via an APC-dependent process. Together, these results demonstrate that stimulation through the canonical Wnt pathway regulates the presynaptic localization of APC and α7-nAChRs with APC serving as an intermediary in the α7-nAChR relocalization process. Modulation by Wnt signaling may be essential for α7-nAChR expression and function in synapses.
Cell | 2013
Xuefeng Ren; Ginny G. Farías; Bertram Canagarajah; Juan S. Bonifacino; James H. Hurley
AP-1 is a clathrin adaptor complex that sorts cargo between the trans-Golgi network and endosomes. AP-1 recruitment to these compartments requires Arf1-GTP. The crystal structure of the tetrameric core of AP-1 in complex with Arf1-GTP, together with biochemical analyses, shows that Arf1 activates cargo binding by unlocking AP-1. Unlocking is driven by two molecules of Arf1 that bridge two copies of AP-1 at two interaction sites. The GTP-dependent switch I and II regions of Arf1 bind to the N terminus of the β1 subunit of one AP-1 complex, while the back side of Arf1 binds to the central part of the γ subunit trunk of a second AP-1 complex. A third Arf1 interaction site near the N terminus of the γ subunit is important for recruitment, but not activation. These observations lead to a model for the recruitment and activation of AP-1 by Arf1.
Molecular Neurodegeneration | 2010
Waldo Cerpa; Ginny G. Farías; Juan A. Godoy; Marco Fuenzalida; Christian Bonansco; Nibaldo C. Inestrosa
BackgroundSoluble amyloid-β (Aβ;) oligomers have been recognized to be early and key intermediates in Alzheimers disease (AD)-related synaptic dysfunction. Aβ oligomers block hippocampal long-term potentiation (LTP) and impair rodent spatial memory. Wnt signaling plays an important role in neural development, including synaptic differentiation.ResultsWe report here that the Wnt signaling activation prevents the synaptic damage triggered by Aβ oligomers. Electrophysiological analysis of Schaffer collaterals-CA1 glutamatergic synaptic transmission in hippocampal slices indicates that Wnt-5a increases the amplitude of field excitatory postsynaptic potentials (fEPSP) and both AMPA and NMDA components of the excitatory postsynaptic currents (EPSCs), without modifying the paired pulse facilitation (PPF). Conversely, in the presence of Aβ oligomers the fEPSP and EPSCs amplitude decreased without modification of the PPF, while the postsynaptic scaffold protein (PSD-95) decreased as well. Co-perfusion of hippocampal slices with Wnt-5a and Aβ oligomers occludes against the synaptic depression of EPSCs as well as the reduction of PSD-95 clusters induced by Aβ oligomers in neuronal cultures. Taken together these results indicate that Wnt-5a and Aβ oligomers inversely modulate postsynaptic components.ConclusionThese results indicate that post-synaptic damage induced by Aβ oligomers in hippocampal neurons is prevented by non-canonical Wnt pathway activation.
Neuron | 2012
Ginny G. Farías; Loreto Cuitino; Xiaoli Guo; Xuefeng Ren; Michal Jarnik; Rafael Mattera; Juan S. Bonifacino
Plasma membranes of the somatodendritic and axonal domains of neurons are known to have different protein compositions, but the molecular mechanisms that determine this polarized protein distribution remain poorly understood. Herein we show that somatodendritic sorting of various transmembrane receptors in rat hippocampal neurons is mediated by recognition of signals within the cytosolic domains of the proteins by the μ1A subunit of the adaptor protein-1 (AP-1) complex. This complex, in conjunction with clathrin, functions in the neuronal soma to exclude somatodendritic proteins from axonal transport carriers. Perturbation of this process affects dendritic spine morphology and decreases the number of synapses. These findings highlight the primary recognition event that underlies somatodendritic sorting and contribute to the evolving view of AP-1 as a global regulator of cell polarity.
Molecular Biology of the Cell | 2012
Yogikala Prabhu; Patricia V. Burgos; Christina Schindler; Ginny G. Farías; Javier G. Magadán; Juan S. Bonifacino
An adaptor protein complex, AP-2, is involved in the endocytosis of β-secretase (BACE1) via the clathrin-dependent machinery. Endosomal targeting of either the amyloid precursor protein (APP) and/or BACE1 is expendable for the amyloidogenic processing of APP.
Cell Reports | 2015
Ginny G. Farías; Carlos M. Guardia; Dylan J. Britt; Xiaoli Guo; Juan S. Bonifacino
Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS) is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ). Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.
Neuromolecular Medicine | 2013
Nibaldo C. Inestrosa; Juan A. Godoy; Jessica Y. Vargas; Macarena S. Arrázola; Juvenal A. Ríos; Francisco J. Carvajal; Felipe G. Serrano; Ginny G. Farías
An emerging view on Alzheimer disease’s (AD) pathogenesis considers amyloid-β (Aβ) oligomers as a key factor in synaptic impairment and rodent spatial memory decline. Alterations in the α7-nicotinic acetylcholine receptor (α7-nAChR) have been implicated in AD pathology. Herein, we report that nicotine, an unselective α7-nAChR agonist, protects from morphological and synaptic impairments induced by Aβ oligomers. Interestingly, nicotine prevents both early postsynaptic impairment and late presynaptic damage induced by Aβ oligomers through the α7-nAChR/phosphatidylinositol-3-kinase (PI3K) signaling pathway. On the other hand, a cross-talk between α7-nAChR and the Wnt/β-catenin signaling pathway was revealed by the following facts: (1) nicotine stabilizes β-catenin, in a concentration-dependent manner; (2) nicotine prevents Aβ-induced loss of β-catenin through the α7-nAChR; and (3) activation of canonical Wnt/β-catenin signaling induces α7-nAChR expression. Analysis of the α7-nAChR promoter indicates that this receptor is a new Wnt target gene. Taken together, these results demonstrate that nicotine prevents memory deficits and synaptic impairment induced by Aβ oligomers. In addition, nicotine improves memory in young APP/PS1 transgenic mice before extensive amyloid deposition and senile plaque development, and also in old mice where senile plaques have already formed. Activation of the α7-nAChR/PI3K signaling pathway and its cross-talk with the Wnt signaling pathway might well be therapeutic targets for potential AD treatments.