Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gino Cortopassi is active.

Publication


Featured researches published by Gino Cortopassi.


Free Radical Biology and Medicine | 1998

INDUCTION OF THE MITOCHONDRIAL PERMEABILITY TRANSITION CAUSES RELEASE OF THE APOPTOGENIC FACTOR CYTOCHROME C

Joy C. Yang; Gino Cortopassi

It was recently reported that the mitochondrial protein cytochrome c is required for the induction of apoptosis, and that the overexpression of Bcl-2 caused increased retention of this apoptogenic factor by mitochondria. Several cellular toxins, including H2O2, tBOOH and Ca++, induce the Mitochondrial Permeability Transition (MPT); we tested the possibility that MPT is an intracellular sensor of toxicity that results in the release of cytochrome c. We observe that the release of cytochrome c from purified mitochondria is stimulated by the classical inducers of MPT, and is inhibited by the classical inhibitor of MPT, cyclosporin A (CsA). After induction of MPT, mitochondrial supernatants gained the activity to induce cleavage of caspase 3 (CPP32) in cytosolic extracts, and this gain of activity was inhibited by CsA pretreatment of mitochondria, and was cancelled by immunodepletion of cytochrome c from the supernatants. After induction of MPT, mitochondrial supernatants mixed with or without cytosolic extract gained the activity to ladder nuclei, and this gain of activity was inhibited by CsA pretreatment of mitochondria, and cancelled by immunodepletion of cytochrome c from the supernatants. These results demonstrate that the induction of MPT causes release of cytochrome c from mitochondria, which is required for the hallmarks of cytosolic and nuclear apoptosis, caspase 3 activation and nuclear laddering, and identify the MPT as a potential intracellular sensor of oxidants and other toxins, and as a target for the pharmacological inhibition of apoptosis.


Biochimica et Biophysica Acta | 1999

Mitochondria in organismal aging and degeneration

Gino Cortopassi; Alice Wong

Several lines of experimentation support the view that the genetic, biochemical and bioenergetic functions of somatic mitochondria deteriorate during normal aging. Deletion mutations of the mitochondrial genome accumulate exponentially with age in nerve and muscle tissue of humans and multiple other species. In muscle, a tissue that undergoes age-related fiber loss and atrophy in humans, there is an exponential rise in the number of cytochrome-oxidase-deficient fibers, which is first detectable in the fourth decile of age. Most biochemical studies of animal mitochondrial activity indicate a decline in electron transport activity with age, as well as decreased bioenergetic capacity with age, as measured by mitochondrial membrane potential. Mitochondrial mutations may be both the result of mitochondrial oxidative stress, and cells bearing pure populations of pathogenic mitochondrial mutations are sensitized to oxidant stress. Oxidant stress to mitochondria is known to induce the mitochondrial permeability transition, which has recently been implicated in the release of cytochrome c and the initiation of apoptosis. Thus several lines of evidence support a contribution of mitochondrial dysfunction to the phenotypic changes associated with aging.


Hearing Research | 2001

Genetic basis for susceptibility to noise-induced hearing loss in mice

Rickie R Davis; J. Kelly Newlander; Xiao Bing Ling; Gino Cortopassi; Edward F. Krieg; Lawrence C. Erway

The C57BL/6J (B6) and DBA/2J (D2) inbred strains of mice exhibit an age-related hearing loss (AHL) due to a recessive gene (Ahl) that maps to Chromosome 10. The Ahl gene is also implicated in the susceptibility to noise-induced hearing loss (NIHL). The B6 mice (Ahl/Ahl) are more susceptible to NIHL than the CBA/CaJ (CB) mice (+(Ahl)). The B6xD2.F(1) hybrid mice (Ahl/Ahl) are more susceptible to NIHL than the CBxB6.F(1) mice (+/Ahl) [Erway et al., 1996. Hear. Res. 93, 181-187]. These genetic effects implicate the Ahl gene as contributing to NIHL susceptibility. The present study demonstrates segregation for the putative Ahl gene and mapping of such a gene to Chromosome 10, consistent with other independent mapping of Ahl for AHL in 10 strains of mice [Johnson et al., 2000. Genomics 70, 171-180]. The present study was based on a conventional cross between two inbred strains, CBxB6.F(1) backcrossed to B6 with segregation for the putative +/Ahl:Ahl/Ahl. These backcross progeny were exposed to 110 dB SPL noise for 8 h. All of the progeny were tested for auditory evoked brainstem responses and analyzed for any significant permanent threshold shift of NIHL. Cluster analyses were used to distinguish the two putative genotypes, the least affected with NIHL (+/Ahl) and most affected with PTS (Ahl/Ahl). Approximately 1/2 of the backcross progeny exhibited PTS, particularly at 16 kHz. These mice were genotyped for two D10Mit markers. Quantitative trait loci analyses (log of the odds=15) indicated association of the genetic factor within a few centiMorgan of the best evidence for Ahl [Johnson et al., 2000. Genomics 70, 171-180]. All of the available evidence supports a role for the Ahl gene in both AHL and NIHL among these strains of mice.


Journal of Biological Chemistry | 2010

Pyrroloquinoline Quinone Stimulates Mitochondrial Biogenesis through cAMP Response Element-binding Protein Phosphorylation and Increased PGC-1α Expression

Winyoo Chowanadisai; Kathryn Bauerly; Eskouhie Tchaparian; Alice Wong; Gino Cortopassi; Robert B. Rucker

Bioactive compounds reported to stimulate mitochondrial biogenesis are linked to many health benefits such increased longevity, improved energy utilization, and protection from reactive oxygen species. Previously studies have shown that mice and rats fed diets lacking in pyrroloquinoline quinone (PQQ) have reduced mitochondrial content. Therefore, we hypothesized that PQQ can induce mitochondrial biogenesis in mouse hepatocytes. Exposure of mouse Hepa1–6 cells to 10–30 μm PQQ for 24–48 h resulted in increased citrate synthase and cytochrome c oxidase activity, Mitotracker staining, mitochondrial DNA content, and cellular oxygen respiration. The induction of this process occurred through the activation of cAMP response element-binding protein (CREB) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a pathway known to regulate mitochondrial biogenesis. PQQ exposure stimulated phosphorylation of CREB at serine 133, activated the promoter of PGC-1α, and increased PGC-1α mRNA and protein expression. PQQ did not stimulate mitochondrial biogenesis after small interfering RNA-mediated reduction in either PGC-1α or CREB expression. Consistent with activation of the PGC-1α pathway, PQQ increased nuclear respiratory factor activation (NRF-1 and NRF-2) and Tfam, TFB1M, and TFB2M mRNA expression. Moreover, PQQ protected cells from mitochondrial inhibition by rotenone, 3-nitropropionic acid, antimycin A, and sodium azide. The ability of PQQ to stimulate mitochondrial biogenesis accounts in part for action of this compound and suggests that PQQ may be beneficial in diseases associated with mitochondrial dysfunction.


Blood | 2008

Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation

Or Kakhlon; Hila Manning; William Breuer; Naomi Melamed-Book; Chunye Lu; Gino Cortopassi; Arnold Munnich; Z. Ioav Cabantchik

Various human disorders are associated with misdistribution of iron within or across cells. Friedreich ataxia (FRDA), a deficiency in the mitochondrial iron-chaperone frataxin, results in defective use of iron and its misdistribution between mitochondria and cytosol. We assessed the possibility of functionally correcting the cellular properties affected by frataxin deficiency with a siderophore capable of relocating iron and facilitating its metabolic use. Adding the chelator deferiprone at clinical concentrations to inducibly frataxin-deficient HEK-293 cells resulted in chelation of mitochondrial labile iron involved in oxidative stress and in reactivation of iron-depleted aconitase. These led to (1) restoration of impaired mitochondrial membrane and redox potentials, (2) increased adenosine triphosphate production and oxygen consumption, and (3) attenuation of mitochondrial DNA damage and reversal of hypersensitivity to staurosporine-induced apoptosis. Permeant chelators of higher affinity than deferiprone were not as efficient in restoring affected functions. Thus, although iron chelation might protect cells from iron toxicity, rendering the chelated iron bioavailable might underlie the capacity of deferiprone to restore cell functions affected by frataxin deficiency, as also observed in FRDA patients. The siderophore-like properties of deferiprone provide a rational basis for treating diseases of iron misdistribution, such as FRDA, anemia of chronic disease, and X-linked sideroblastic anemia with ataxia.


Mechanisms of Ageing and Development | 1996

There is substantial agreement among interspecies estimates of DNA repair activity

Gino Cortopassi; E. Wang

Faithful maintenance of the genetic material is essential for cellular and organismal function. Thus the activity with which nuclear and mitochondrial DNA is repaired in somatic cells is likely to be an crucial determinant of maximal lifespan (MLS). However there has been controversy over both the actual rates of DNA repair in a variety of species, and the correlation of those rates with maximal lifespan. Five comparative studies of DNA repair have been re-analyzed with reference to an internal repair standard. Although some variance in measurements of DNA repair activity of the same species in different laboratories was observed, overall there is good agreement on the rank order of repair activity once those studies are internally calibrated. A six-fold range of relative DNA repair activity was observed, with mouse, rat and shrew lowest (0.9 to 1.0), and human and gorilla highest (4.5 to 5.3). The correlation between DNA repair activity and MLS was good, but not excellent (r2 = 0.845); a possible explanation is that active DNA repair is a necessary but not sufficient condition for long MLS. We investigated the kinetics of mitochondrial mutagenesis and tumorigenesis in mice and humans, and observed that each proceeds at a rate approximately 40-fold faster in mice than in humans. Thus one likely consequence of the deficiency of DNA repair in small rodents is an increased rate of mutagenesis and tumorigenesis. The large differences in metabolic investment in genomic maintenance in mice versus humans is a prediction of the disposable soma theory of aging, which is discussed.


Journal of the American Heart Association | 2012

OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability.

Le Chen; Tingting Liu; Alice Tran; Xiyuan Lu; Alexey Tomilov; Vanessa J. Davies; Gino Cortopassi; Nipavan Chiamvimonvat; Donald M. Bers; Marcela Votruba; Anne A. Knowlton

Background Mitochondrial fusion protein mutations are a cause of inherited neuropathies such as Charcot–Marie–Tooth disease and dominant optic atrophy. Previously we reported that the fusion protein optic atrophy 1 (OPA1) is decreased in heart failure. Methods and Results We investigated cardiac function, mitochondrial function, and mtDNA stability in a mouse model of the disease with OPA1 mutation. The homozygous mutation is embryonic lethal. Heterozygous OPA+/− mice exhibit reduced mtDNA copy number and decreased expression of nuclear antioxidant genes at 3 to 4 months. Although initial cardiac function was normal, at 12 months the OPA1+/− mouse hearts had decreased fractional shortening, cardiac output, and myocyte contraction. This coincided with the onset of blindness. In addition to small fragmented mitochondria, aged OPA1+/− mice had impaired cardiac mitochondrial function compared with wild-type littermates. Conclusions OPA1 mutation leads to deficiency in antioxidant transcripts, increased reactive oxygen species, mitochondrial dysfunction, and late-onset cardiomyopathy.


Mutation Research | 1997

The rate of mitochondrial mutagenesis is faster in mice than humans.

Endi Wang; Alice Wong; Gino Cortopassi

We have investigated mitochondrial DNA (mtDNA) mutagenesis in the laboratory mouse. Using a nested PCR method for quantification, the absolute frequency, tissue distribution and rate of increase of mitochondrial deletion mutations was determined. Multiple deletions arise in brain, cardiac muscle and kidney tissues: deletions occur most frequently at regions of directly repeated mtDNA homology. Deletion frequencies rose by 2.5 x 10(5), 6300- and 4000-fold in heart, brain and kidney, respectively, between young and old mice. The rates of mtDNA mutation accumulation in mouse and human hearts are modeled well by exponential equations, with r-values of 0.96 and 0.97, and mutations rose much faster in mouse than human mtDNA per unit time. Thus, maintenance of the human mitochondrial genome is much better than that of mice, consistent with the higher rate and final extent of total DNA repair in humans than mice, that has been observed by others and consistent with the predictions of the disposable soma model of aging. A comparison of mtDNA mutagenesis from cardiocytes vs. whole heart tissue was undertaken. Deletion mutations were observed to be 100-fold lower in DNA prepared from isolated cardiocytes than from whole heart homogenates, consistent with a model of uneven mtDNA mutation accumulation.


Antioxidants & Redox Signaling | 2013

Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model.

Yuxi Shan; Robert Schoenfeld; Genki Hayashi; Eleonora Napoli; Tasuku Akiyama; Mirela Iodi Carstens; E. Carstens; Mark A. Pook; Gino Cortopassi

AIMS Oxidative stress is thought to be involved in Friedreichs ataxia (FRDA), yet it has not been demonstrated in the target neurons that are first to degenerate. Using the YG8R mouse model of FRDA, microarray and neuritic growth experiments were carried out in the dorsal root ganglion (DRG), the primary site of neurodegeneration in this disease. RESULTS YG8R hemizygous mice exhibited defects in movement, and DRG neurites had growth defects. Microarray of DRG tissue identified decreased transcripts encoding the antioxidants, including peroxiredoxins, glutaredoxins, and glutathione S-transferase, and these were confirmed by immunoblots and quantitative real-time PCR. Because the decreased gene transcripts are the known targets of the antioxidant transcription factor nuclear factor-E2-related factor-2 (Nrf2), Nrf2 expression was measured; it was significantly decreased at the transcript and protein level in both the DRG and the cerebella of the YG8R hemizygous mouse; further, frataxin expression was significantly correlated with Nrf2 expression. Functionally, in YG8R hemizygous DRG, the total glutathione levels were reduced and explanted cells were more sensitive to the thioredoxin reductase (TxnRD) inhibitor auranofin, a thiol oxidant. In cell models of FRDA, including Schwann and the DRG, frataxin deficiency caused a decreased expression of the Nrf2 protein level in the nucleus, but not a defect in its translocation from the cytosol. Further, frataxin-deficient cells had decreased enzyme activity and expression of TxnRD, which is regulated by Nrf2, and were sensitive the TxnRD inhibitor auranofin. INNOVATION AND CONCLUSION These results support a mechanistic hypothesis in which frataxin deficiency decreases Nrf2 expression in vivo, causing the sensitivity to oxidative stress in target tissues the DRG and the cerebella, which contributes to the process of neurodegeneration.


Biochimica et Biophysica Acta | 2009

Frataxin Deficiency Induces Schwann Cell Inflammation and Death

Chunye Lu; Robert Schoenfeld; Yuxi Shan; Hsing Jo Tsai; Bruce D. Hammock; Gino Cortopassi

Mutations in the frataxin gene cause dorsal root ganglion demyelination and neurodegeneration, which leads to Friedreichs ataxia. However the consequences of frataxin depletion have not been measured in dorsal root ganglia or Schwann cells. We knocked down frataxin in several neural cell lines, including two dorsal root ganglia neural lines, 2 neuronal lines, a human oligodendroglial line (HOG) and multiple Schwann cell lines and measured cell death and proliferation. Only Schwann cells demonstrated a significant decrease in viability. In addition to the death of Schwann cells, frataxin decreased proliferation in Schwann, oligodendroglia, and slightly in one neural cell line. Thus the most severe effects of frataxin deficiency were on Schwann cells, which enwrap dorsal root ganglia neurons. Microarray of frataxin-deficient Schwann cells demonstrated strong activations of inflammatory and cell death genes including interleukin-6 and Tumor Necrosis Factor which were confirmed at the mRNA and protein levels. Frataxin knockdown in Schwann cells also specifically induced inflammatory arachidonate metabolites. Anti-inflammatory and anti-apoptotic drugs significantly rescued frataxin-dependent Schwann cell toxicity. Thus, frataxin deficiency triggers inflammatory changes and death of Schwann cells that is inhibitable by inflammatory and anti-apoptotic drugs.

Collaboration


Dive into the Gino Cortopassi's collaboration.

Top Co-Authors

Avatar

Alice Wong

University of California

View shared research outputs
Top Co-Authors

Avatar

Alexey Tomilov

University of California

View shared research outputs
Top Co-Authors

Avatar

Sandipan Datta

University of California

View shared research outputs
Top Co-Authors

Avatar

Sunil Sahdeo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon J. Ramsey

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lanying Song

University of California

View shared research outputs
Top Co-Authors

Avatar

Alfred K. Yu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge