Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gino Heeren is active.

Publication


Featured researches published by Gino Heeren.


Nature Cell Biology | 2009

Induction of autophagy by spermidine promotes longevity

Tobias Eisenberg; Heide Knauer; Alexandra Schauer; Sabrina Büttner; Christoph Ruckenstuhl; Didac Carmona-Gutierrez; Julia Ring; Sabrina Schroeder; Christoph Magnes; Lucia Antonacci; Heike Fussi; Luiza Deszcz; Regina Hartl; Elisabeth Schraml; Alfredo Criollo; Evgenia Megalou; Daniela Weiskopf; Peter Laun; Gino Heeren; Michael Breitenbach; Beatrix Grubeck-Loebenstein; Eva Herker; Birthe Fahrenkrog; Kai-Uwe Fröhlich; Frank Sinner; Nektarios Tavernarakis; Nadege Minois; Guido Kroemer; Frank Madeo

Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells. In addition, spermidine administration potently inhibited oxidative stress in ageing mice. In ageing yeast, spermidine treatment triggered epigenetic deacetylation of histone H3 through inhibition of histone acetyltransferases (HAT), suppressing oxidative stress and necrosis. Conversely, depletion of endogenous polyamines led to hyperacetylation, generation of reactive oxygen species, early necrotic death and decreased lifespan. The altered acetylation status of the chromatin led to significant upregulation of various autophagy-related transcripts, triggering autophagy in yeast, flies, worms and human cells. Finally, we found that enhanced autophagy is crucial for polyamine-induced suppression of necrosis and enhanced longevity.


Journal of Biology | 2007

Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress

Markus Ralser; Mirjam M. C. Wamelink; Axel Kowald; Birgit Gerisch; Gino Heeren; Eduard A. Struys; Edda Klipp; Cornelis Jakobs; Michael Breitenbach; Hans Lehrach; Sylvia Krobitsch

Background Eukaryotic cells have evolved various response mechanisms to counteract the deleterious consequences of oxidative stress. Among these processes, metabolic alterations seem to play an important role. Results We recently discovered that yeast cells with reduced activity of the key glycolytic enzyme triosephosphate isomerase exhibit an increased resistance to the thiol-oxidizing reagent diamide. Here we show that this phenotype is conserved in Caenorhabditis elegans and that the underlying mechanism is based on a redirection of the metabolic flux from glycolysis to the pentose phosphate pathway, altering the redox equilibrium of the cytoplasmic NADP(H) pool. Remarkably, another key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is known to be inactivated in response to various oxidant treatments, and we show that this provokes a similar redirection of the metabolic flux. Conclusion The naturally occurring inactivation of GAPDH functions as a metabolic switch for rerouting the carbohydrate flux to counteract oxidative stress. As a consequence, altering the homoeostasis of cytoplasmic metabolites is a fundamental mechanism for balancing the redox state of eukaryotic cells under stress conditions.


Experimental Gerontology | 2007

Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span.

Andreas G. Chiocchetti; Jia Zhou; Huashun Zhu; Thomas Karl; Olaf Haubenreisser; Mark Rinnerthaler; Gino Heeren; Kamil Oender; Johann W. Bauer; Helmut Hintner; Michael Breitenbach; Lore Breitenbach-Koller

The yeast ribosome is composed of two subunits, the large 60S subunit (LSU) and the small 40S subunit (SSU) and harbors 78 ribosomal proteins (RPs), 59 of which are encoded by duplicate genes. Recently, deletions of the LSU paralogs RPL31A and RPL6B were found to increase significantly yeast replicative life span (RLS). RPs Rpl10 and Rps6 are known translational regulators. Here, we report that heterozygosity for rpl10Delta but not for rpl25Delta, both LSU single copy RP genes, increased RLS by 24%. Deletion of the SSU RPS6B paralog, but not of the RPS6A paralog increased replicative life span robustly by 45%, while deletion of both the SSU RPS18A, and RPS18B paralogs increased RLS moderately, but significantly by 15%. Altering the gene dosage of RPL10 reduced the translating ribosome population, whereas deletion of the RPS6A, RPS6B, RPS18A, and RPS18B paralogs produced a large shift in free ribosomal subunit stoichiometry. We observed a reduction in growth rate in all deletion strains and reduced cell size in the SSU RPS6B, RPS6A, and RPS18B deletion strains. Thus, reduction of gene dosage of RP genes belonging to both the 60S and the 40S subunit affect lifespan, possibly altering the aging process by modulation of translation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Yno1p/Aim14p, a NADPH-oxidase ortholog, controls extramitochondrial reactive oxygen species generation, apoptosis, and actin cable formation in yeast

Mark Rinnerthaler; Sabrina Büttner; Peter Laun; Gino Heeren; Thomas K. Felder; Harald Klinger; Martin Weinberger; Klaus Stolze; Tomas Grousl; Jiri Hasek; Oldrich Benada; Ivana Frydlova; Andrea Klocker; Birgit Simon-Nobbe; Bettina Jansko; Hannelore Breitenbach-Koller; Tobias Eisenberg; Campbell W. Gourlay; Frank Madeo; William C. Burhans; Michael Breitenbach

The large protein superfamily of NADPH oxidases (NOX enzymes) is found in members of all eukaryotic kingdoms: animals, plants, fungi, and protists. The physiological functions of these NOX enzymes range from defense to specialized oxidative biosynthesis and to signaling. In filamentous fungi, NOX enzymes are involved in signaling cell differentiation, in particular in the formation of fruiting bodies. On the basis of bioinformatics analysis, until now it was believed that the genomes of unicellular fungi like Saccharomyces cerevisiae and Schizosaccharomyces pombe do not harbor genes coding for NOX enzymes. Nevertheless, the genome of S. cerevisiae contains nine ORFs showing sequence similarity to the catalytic subunits of mammalian NOX enzymes, only some of which have been functionally assigned as ferric reductases involved in iron ion transport. Here we show that one of the nine ORFs (YGL160W, AIM14) encodes a genuine NADPH oxidase, which is located in the endoplasmic reticulum (ER) and produces superoxide in a NADPH-dependent fashion. We renamed this ORF YNO1 (yeast NADPH oxidase 1). Overexpression of YNO1 causes YCA1-dependent apoptosis, whereas deletion of the gene makes cells less sensitive to apoptotic stimuli. Several independent lines of evidence point to regulation of the actin cytoskeleton by reactive oxygen species (ROS) produced by Yno1p.


PLOS ONE | 2006

Triose Phosphate Isomerase Deficiency Is Caused by Altered Dimerization–Not Catalytic Inactivity–of the Mutant Enzymes

Markus Ralser; Gino Heeren; Michael Breitenbach; Hans Lehrach; Sylvia Krobitsch

Triosephosphate isomerase (TPI) deficiency is an autosomal recessive disorder caused by various mutations in the gene encoding the key glycolytic enzyme TPI. A drastic decrease in TPI activity and an increased level of its substrate, dihydroxyacetone phosphate, have been measured in unpurified cell extracts of affected individuals. These observations allowed concluding that the different mutations in the TPI alleles result in catalytically inactive enzymes. However, despite a high occurrence of TPI null alleles within several human populations, the frequency of this disorder is exceptionally rare. In order to address this apparent discrepancy, we generated a yeast model allowing us to perform comparative in vivo analyses of the enzymatic and functional properties of the different enzyme variants. We discovered that the majority of these variants exhibit no reduced catalytic activity per se. Instead, we observed, the dimerization behavior of TPI is influenced by the particular mutations investigated, and by the use of a potential alternative translation initiation site in the TPI gene. Additionally, we demonstrated that the overexpression of the most frequent TPI variant, Glu104Asp, which displays altered dimerization features, results in diminished endogenous TPI levels in mammalian cells. Thus, our results reveal that enzyme deregulation attributable to aberrant dimerization of TPI, rather than direct catalytic inactivation of the enzyme, underlies the pathogenesis of TPI deficiency. Finally, we discovered that yeast cells expressing a TPI variant exhibiting reduced catalytic activity are more resistant against oxidative stress caused by the thiol-oxidizing reagent diamide. This observed advantage might serve to explain the high allelic frequency of TPI null alleles detected among human populations.


Experimental Gerontology | 2010

Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells.

Harald Klinger; Mark Rinnerthaler; Yuen T. Lam; Peter Laun; Gino Heeren; Andrea Klocker; Birgit Simon-Nobbe; J. Richard Dickinson; Ian W. Dawes; Michael Breitenbach

Asymmetric segregation of oxidatively damaged proteins is discussed in the literature as a mechanism in cell division cycles which at the same time causes rejuvenation of the daughter cell and aging of the mother cell. This process must be viewed as cooperating with the cellular degradation processes like autophagy, proteasomal degradation and others. Together, these two mechanisms guarantee survival of the species and prevent clonal senescence of unicellular organisms, like yeast. It is widely believed that oxidative damage to proteins is primarily caused by oxygen radicals and their follow-up products produced in the mitochondria. As we have shown previously, old yeast mother cells in contrast to young cells contain reactive oxygen species and undergo programmed cell death. Here we show that aconitase of the mitochondrial matrix is readily inactivated by oxidative stress, but even in its inactive form is relatively long-lived and retains fluorescence in the Aco1p-eGFP form. The fluorescent protein is distributed between old mothers and their daughters approximately corresponding to the different sizes of mother and daughter cells. However, the remaining active enzyme is primarily inherited by the daughter cells. This indicates that asymmetric distribution of the still active enzyme takes place and a mechanism for discrimination between active and inactive enzyme must exist. As the aconitase remains mitochondrial during aging and cell division, our findings could indicate discrimination between active and no longer active mitochondria during the process.


Biochimica et Biophysica Acta | 2008

Senescence and apoptosis in yeast mother cell-specific aging and in higher cells: a short review.

Peter Laun; Gino Heeren; Mark Rinnerthaler; Raphaela Rid; Sonja Kössler; Lore Koller; Michael Breitenbach

It is our intention to give the reader a short overview of the relationship between apoptosis and senescence in yeast mother cell-specific aging. We are studying yeast as an aging model because we want to learn something of the basic biology of senescence and apoptosis even from a unicellular eukaryotic model system, using its unrivalled ease of genetic analysis. Consequently, we will discuss also some aspects of apoptosis in metazoa and the relevance of yeast apoptosis and aging research for cellular (Hayflick type) and organismic aging of multicellular higher organisms. In particular, we will discuss the occurrence and relevance of apoptotic phenotypes for the aging process. We want to ask the question whether apoptosis (or parts of the apoptotic process) are a possible cause of aging or vice versa and want to investigate the role of the cellular stress response system in both of these processes. Studying the current literature, it appears that little is known for sure in this field and our review will therefore be, for a large part, more like a memorandum or a program for future research.


Nucleic Acids Research | 2007

Yeast mother cell-specific ageing, genetic (in)stability, and the somatic mutation theory of ageing.

Peter Laun; Carlo V. Bruschi; J. Richard Dickinson; Mark Rinnerthaler; Gino Heeren; Richard Schwimbersky; Raphaela Rid; Michael Breitenbach

Yeast mother cell-specific ageing is characterized by a limited capacity to produce daughter cells. The replicative lifespan is determined by the number of cell cycles a mother cell has undergone, not by calendar time, and in a population of cells its distribution follows the Gompertz law. Daughter cells reset their clock to zero and enjoy the full lifespan characteristic for the strain. This kind of replicative ageing of a cell population based on asymmetric cell divisions is investigated as a model for the ageing of a stem cell population in higher organisms. The simple fact that the daughter cells can reset their clock to zero precludes the accumulation of chromosomal mutations as the cause of ageing, because semiconservative replication would lead to the same mutations in the daughters. However, nature is more complicated than that because, (i) the very last daughters of old mothers do not reset the clock; and (ii) mutations in mitochondrial DNA could play a role in ageing due to the large copy number in the cell and a possible asymmetric distribution of damaged mitochondrial DNA between mother and daughter cell. Investigation of the loss of heterozygosity in diploid cells at the end of their mother cell-specific lifespan has shown that genomic rearrangements do occur in old mother cells. However, it is not clear if this kind of genomic instability is causative for the ageing process. Damaged material other than DNA, for instance misfolded, oxidized or otherwise damaged proteins, seem to play a major role in ageing, depending on the balance between production and removal through various repair processes, for instance several kinds of proteolysis and autophagy. We are reviewing here the evidence for genetic change and its causality in the mother cell-specific ageing process of yeast.


Molecular Biology of the Cell | 2013

Superoxide Radicals have a Protective Role during H2O2 Stress

Geoffrey W. Thorpe; Mayfebelle Reodica; Michael J. Davies; Gino Heeren; Stefanie Jarolim; Bethany A. Pillay; Michael Breitenbach; Vincent J. Higgins; Ian W. Dawes

H2O2-stressed yeast cells increase superoxide radical production, dependent on the mitochondrial respiratory chain. This is protective during H2O2 stress at low levels; however, higher superoxide levels are deleterious. This hormesis may further elucidate the role of reactive oxygen species in oxidative stress and aging.


PLOS ONE | 2013

Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity.

Mark Rinnerthaler; Renata Lejskova; Tomas Grousl; Vendula Stradalova; Gino Heeren; Klaus Richter; Lore Breitenbach-Koller; Jan Malinsky; Jiri Hasek; Michael Breitenbach

As we have shown previously, yeast Mmi1 protein translocates from the cytoplasm to the outer surface of mitochondria when vegetatively growing yeast cells are exposed to oxidative stress. Here we analyzed the effect of heat stress on Mmi1 distribution. We performed domain analyses and found that binding of Mmi1 to mitochondria is mediated by its central alpha-helical domain (V-domain) under all conditions tested. In contrast, the isolated N-terminal flexible loop domain of the protein always displays nuclear localization. Using immunoelectron microscopy we confirmed re-location of Mmi1 to the nucleus and showed association of Mmi1 with intact and heat shock-altered mitochondria. We also show here that mmi1Δ mutant strains are resistant to robust heat shock with respect to clonogenicity of the cells. To elucidate this phenotype we found that the cytosolic Mmi1 holoprotein re-localized to the nucleus even in cells heat-shocked at 40°C. Upon robust heat shock at 46°C, Mmi1 partly co-localized with the proteasome marker Rpn1 in the nuclear region as well as with the cytoplasmic stress granules defined by Rpg1 (eIF3a). We co-localized Mmi1 also with Bre5, Ubp3 and Cdc48 which are involved in the protein de-ubiquitination machinery, protecting protein substrates from proteasomal degradation. A comparison of proteolytic activities of wild type and mmi1Δ cells revealed that Mmi1 appears to be an inhibitor of the proteasome. We conclude that one of the physiological functions of the multifunctional protein module, Mmi1, is likely in regulating degradation and/or protection of proteins thereby indirectly regulating the pathways leading to cell death in stressed cells.

Collaboration


Dive into the Gino Heeren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Laun

University of Salzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge