Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gino Poulin is active.

Publication


Featured researches published by Gino Poulin.


Nature | 2003

Systematic functional analysis of the Caenorhabditis elegans genome using RNAi

Ravi S. Kamath; Andrew G. Fraser; Yan Dong; Gino Poulin; Richard Durbin; Monica Gotta; Alexander Kanapin; Nathalie Le Bot; Sergio Moreno; Marc Sohrmann; David P. Welchman; Peder Zipperlen; Julie Ahringer

A principal challenge currently facing biologists is how to connect the complete DNA sequence of an organism to its development and behaviour. Large-scale targeted-deletions have been successful in defining gene functions in the single-celled yeast Saccharomyces cerevisiae, but comparable analyses have yet to be performed in an animal. Here we describe the use of RNA interference to inhibit the function of ∼86% of the 19,427 predicted genes of C. elegans. We identified mutant phenotypes for 1,722 genes, about two-thirds of which were not previously associated with a phenotype. We find that genes of similar functions are clustered in distinct, multi-megabase regions of individual chromosomes; genes in these regions tend to share transcriptional profiles. Our resulting data set and reusable RNAi library of 16,757 bacterial clones will facilitate systematic analyses of the connections among gene sequence, chromosomal location and gene function in C. elegans.


Molecular and Cellular Biology | 1997

NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene.

Gino Poulin; Benjamin Turgeon; Jacques Drouin

NeuroD1/beta2 is a basic helix-loop-helix (bHLH) factor expressed in the endocrine cells of the pancreas and in a subset of neurons as they undergo terminal differentiation. We now show that NeuroD1 is expressed in corticotroph cells of the pituitary gland and that it is involved in cell-specific transcription of the proopiomelanocortin (POMC) gene. It was previously shown that corticotroph-specific POMC transcription depends in part on the action of cell-restricted bHLH factors that were characterized as the CUTE (corticotroph upstream transcription element) (M. Therrien and J. Drouin, Mol. Cell. Biol. 13:2342-2353, 1993) complexes. We now demonstrate that these complexes contain NeuroD1 in association with various ubiquitous bHLH dimerization partners. The NeuroD1-containing heterodimers specifically recognize and activate transcription from the POMC promoter E box that confers transcriptional specificity. Interestingly, the NeuroD1 heterodimers activate transcription in synergy with Ptx1, a Bicoid-related homeodomain protein, which also contributes to corticotroph specificity of POMC transcription. In the adult pituitary gland, NeuroD1 transcripts are detected in POMC-expressing corticotroph cells. Taken together with the restricted pattern of Ptx1 expression, these results suggest that these two factors establish the basis of a combinatorial code for the program of corticotroph-specific gene expression.


Molecular and Cellular Biology | 2000

Specific Protein-Protein Interaction between Basic Helix-Loop-Helix Transcription Factors and Homeoproteins of the Pitx Family

Gino Poulin; Mélanie Lebel; Michel Chamberland; François W. Paradis; Jacques Drouin

ABSTRACT Homeoproteins and basic helix-loop-helix (bHLH) transcription factors are known for their critical role in development and cellular differentiation. The pituitary pro-opiomelanocortin (POMC) gene is a target for factors of both families. Indeed, pituitary-specific transcription of POMC depends on the action of the homeodomain-containing transcription factor Pitx1 and of bHLH heterodimers containing NeuroD1. We now show lineage-restricted expression of NeuroD1 in pituitary corticotroph cells and a direct physical interaction between bHLH heterodimers and Pitx1 that results in transcriptional synergism. The interaction between the bHLH and homeodomains is restricted to ubiquitous (class A) bHLH and to the Pitx subfamily. Since bHLH heterodimers interact with Pitx factors through their ubiquitous moiety, this mechanism may be implicated in other developmental processes involving bHLH factors, such as neurogenesis and myogenesis.


The EMBO Journal | 2005

Chromatin regulation and sumoylation in the inhibition of Ras‐induced vulval development in Caenorhabditis elegans

Gino Poulin; Yan Dong; Andrew G Fraser; Neil A. Hopper; Julie Ahringer

In Caenorhabditis elegans, numerous ‘synMuv’ (synthetic multivulval) genes encode for chromatin‐associated proteins involved in transcriptional repression, including an orthologue of Rb and components of the NuRD histone deacetylase complex. These genes antagonize Ras signalling to prevent erroneous adoption of vulval fate. To identify new components of this mechanism, we performed a genome‐wide RNA interference (RNAi) screen. After RNAi of 16 757 genes, we found nine new synMuv genes. Based on predicted functions and genetic epistasis experiments, we propose that at least four post‐translational modifications converge to inhibit Ras‐stimulated vulval development: sumoylation, histone tail deacetylation, methylation, and acetylation. In addition, we demonstrate a novel role for sumoylation in inhibiting LIN‐12/Notch signalling in the vulva. We further show that many of the synMuv genes are involved in gene regulation outside the vulva, negatively regulating the expression of the Delta homologue lag‐2. As most of the genes identified in this screen are conserved in humans, we suggest that similar interactions may be relevant in mammals for control of Ras and Notch signalling, crosstalk between these pathways, and cell proliferation.


Genes & Development | 2010

The histone demethylase UTX enables RB-dependent cell fate control

Jordon K. Wang; Miao Chih Tsai; Gino Poulin; Adam S. Adler; Shuzhen Chen; Helen Liu; Yang Shi; Howard Y. Chang

Trimethylation of histone H3 on Lys 27 (H3K27me3) is key for cell fate regulation. The H3K27me3 demethylase UTX functions in development and tumor suppression with undefined mechanisms. Here, genome-wide chromatin occupancy analysis of UTX and associated histone modifications reveals distinct classes of UTX target genes, including genes encoding Retinoblastoma (RB)-binding proteins. UTX removes H3K27me3 and maintains expression of several RB-binding proteins, enabling cell cycle arrest. Genetic interactions in mammalian cells and Caenorhabditis elegans show that UTX regulates cell fates via RB-dependent pathways. Thus, UTX defines an evolutionarily conserved mechanism to enable coordinate transcription of a RB network in cell fate control.


Oncogene | 2004

Genome-wide RNAi screens in Caenorhabditis elegans: impact on cancer research

Gino Poulin; Ramkumar Nandakumar; Julie Ahringer

Genes linked to human cancers often function in evolutionary conserved pathways, and research in C. elegans has been instrumental in dissecting some of the pathways affected, such as apoptosis and Ras signalling. The advent of RNA interference (RNAi) technology has allowed high-throughput loss-of-function analyses of C. elegans gene functions. Here we review some of the most recent genome-wide RNAi screens that have been conducted and discuss their impact on cancer research and possibilities for future screens. We also show that genes causally implicated in human cancers are significantly more likely to have a C. elegans homologue than average, validating the use of C. elegans as a cancer gene discovery platform. We foresee that genome-wide RNAi screens in C. elegans will continue to be productive in identifying new cancer gene candidates and will provide further insights into cancer gene functions.


Developmental Biology | 2010

Methylation and demethylation activities of a C. elegans MLL-like complex attenuate RAS signalling.

Kate Fisher; Stacey M. Southall; Jon R. Wilson; Gino Poulin

The conserved Mixed Lineage Leukaemia (MLL) complex deposits activating methyl marks on histone tails through a methyltransferase (MT) activity. Here we provide in vivo evidence that in addition to methylation, the C. elegans MLL-like complex can remove specific methyl marks linked to repression of transcription. This supports the proposed model in which the MLL complex orchestrates both the deposition and the removal of methyl marks to activate transcription. We have uncovered the MLL-like complex in a large-scale RNAi screen designed to identify attenuators of RAS signalling during vulval development. We have also found that the histone acetyltransferase complex, NuA4/TIP60, cooperates with the C. elegans MLL-like complex in the attenuation of RAS signalling. Critically, we show that both complexes regulate a common novel target and attenuator of RAS signalling, AJM-1 (Apical Junction Molecule-1). Therefore, the C. elegans MLL-like complex cooperates with the NuA4/TIP60 complex to regulate the expression of a novel effector, AJM-1.


Nature Cell Biology | 2015

A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity

Richard M. Monaghan; Robert G. Barnes; Kate Fisher; Tereza Andreou; Nicholas Rooney; Gino Poulin; Alan J. Whitmarsh

The coordinated regulation of mitochondrial and nuclear activities is essential for cellular respiration and its disruption leads to mitochondrial dysfunction, a hallmark of ageing. Mitochondria communicate with nuclei through retrograde signalling pathways that modulate nuclear gene expression to maintain mitochondrial homeostasis. The monooxygenase CLK-1 (human homologue COQ7) was previously reported to be mitochondrial, with a role in respiration and longevity. We have uncovered a distinct nuclear form of CLK-1 that independently regulates lifespan. Nuclear CLK-1 mediates a retrograde signalling pathway that is conserved from Caenorhabditis elegans to humans and is responsive to mitochondrial reactive oxygen species, thus acting as a barometer of oxidative metabolism. We show that, through modulation of gene expression, the pathway regulates both mitochondrial reactive oxygen species metabolism and the mitochondrial unfolded protein response. Our results demonstrate that a respiratory enzyme acts in the nucleus to control mitochondrial stress responses and longevity.


Nucleic Acids Research | 2012

WormQTL—public archive and analysis web portal for natural variation data in Caenorhabditis spp

L. Basten Snoek; K. Joeri van der Velde; Danny Arends; Yang Li; Antje Beyer; Mark Elvin; Jasmin Fisher; Alex Hajnal; Michael O. Hengartner; Gino Poulin; Miriam Rodriguez; Tobias Schmid; Sabine P. Schrimpf; Feng Xue; Ritsert C. Jansen; Jan E. Kammenga; Morris A. Swertz

Here, we present WormQTL (http://www.wormqtl.org), an easily accessible database enabling search, comparative analysis and meta-analysis of all data on variation in Caenorhabditis spp. Over the past decade, Caenorhabditis elegans has become instrumental for molecular quantitative genetics and the systems biology of natural variation. These efforts have resulted in a valuable amount of phenotypic, high-throughput molecular and genotypic data across different developmental worm stages and environments in hundreds of C. elegans strains. WormQTL provides a workbench of analysis tools for genotype–phenotype linkage and association mapping based on but not limited to R/qtl (http://www.rqtl.org). All data can be uploaded and downloaded using simple delimited text or Excel formats and are accessible via a public web user interface for biologists and R statistic and web service interfaces for bioinformaticians, based on open source MOLGENIS and xQTL workbench software. WormQTL welcomes data submissions from other worm researchers.


The EMBO Journal | 2012

Nuclear receptor binding protein 1 regulates intestinal progenitor cell homeostasis and tumour formation.

Catherine Helen Wilson; Catriona Crombie; Louise van der Weyden; George Poulogiannis; Alistair G. Rust; Mercedes Pardo; Tannia Gracia; Lu Yu; Jyoti S. Choudhary; Gino Poulin; Rebecca E McIntyre; Douglas J. Winton; H Nikki March; Mark J. Arends; Andrew G. Fraser; David J. Adams

Genetic screens in simple model organisms have identified many of the key components of the conserved signal transduction pathways that are oncogenic when misregulated. Here, we identify H37N21.1 as a gene that regulates vulval induction in let‐60(n1046gf), a strain with a gain‐of‐function mutation in the Caenorhabditis elegans Ras orthologue, and show that somatic deletion of Nrbp1, the mouse orthologue of this gene, results in an intestinal progenitor cell phenotype that leads to profound changes in the proliferation and differentiation of all intestinal cell lineages. We show that Nrbp1 interacts with key components of the ubiquitination machinery and that loss of Nrbp1 in the intestine results in the accumulation of Sall4, a key mediator of stem cell fate, and of Tsc22d2. We also reveal that somatic loss of Nrbp1 results in tumourigenesis, with haematological and intestinal tumours predominating, and that nuclear receptor binding protein 1 (NRBP1) is downregulated in a range of human tumours, where low expression correlates with a poor prognosis. Thus NRBP1 is a conserved regulator of cell fate, that plays an important role in tumour suppression.

Collaboration


Dive into the Gino Poulin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate Fisher

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Jan E. Kammenga

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Mark Elvin

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Jacques Drouin

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Mellor

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Yan Dong

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Rodriguez

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge