Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgia Dina is active.

Publication


Featured researches published by Giorgia Dina.


Nature | 2003

Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis

Stefano Pluchino; Angelo Quattrini; Elena Brambilla; Angela Gritti; Giuliana Salani; Giorgia Dina; Rossella Galli; Ubaldo Del Carro; Stefano Amadio; Alessandra Bergami; Roberto Furlan; Giancarlo Comi; Angelo L. Vescovi; Gianvito Martino

Widespread demyelination and axonal loss are the pathological hallmarks of multiple sclerosis. The multifocal nature of this chronic inflammatory disease of the central nervous system complicates cellular therapy and puts emphasis on both the donor cell origin and the route of cell transplantation. We established syngenic adult neural stem cell cultures and injected them into an animal model of multiple sclerosis—experimental autoimmune encephalomyelitis (EAE) in the mouse—either intravenously or intracerebroventricularly. In both cases, significant numbers of donor cells entered into demyelinating areas of the central nervous system and differentiated into mature brain cells. Within these areas, oligodendrocyte progenitors markedly increased, with many of them being of donor origin and actively remyelinating axons. Furthermore, a significant reduction of astrogliosis and a marked decrease in the extent of demyelination and axonal loss were observed in transplanted animals. The functional impairment caused by EAE was almost abolished in transplanted mice, both clinically and neurophysiologically. Thus, adult neural precursor cells promote multifocal remyelination and functional recovery after intravenous or intrathecal injection in a chronic model of multiple sclerosis.


Journal of Cell Biology | 2004

Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis

Alessandra Bolino; Annalisa Bolis; Stefano C. Previtali; Giorgia Dina; Simona Bussini; Gabriele Dati; Stefano Amadio; Ubaldo Del Carro; Dolores Mruk; Maria Laura Feltri; C. Yan Cheng; Angelo Quattrini; Lawrence Wrabetz

Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth (CMT) type 4B1, a demyelinating neuropathy with myelin outfolding and azoospermia. MTMR2 encodes a ubiquitously expressed phosphatase whose preferred substrate is phosphatidylinositol (3,5)-biphosphate, a regulator of membrane homeostasis and vesicle transport. We generated Mtmr2-null mice, which develop progressive neuropathy characterized by myelin outfolding and recurrent loops, predominantly at paranodal myelin, and depletion of spermatids and spermatocytes from the seminiferous epithelium, which leads to azoospermia. Disruption of Mtmr2 in Schwann cells reproduces the myelin abnormalities. We also identified a novel physical interaction in Schwann cells, between Mtmr2 and discs large 1 (Dlg1)/synapse-associated protein 97, a scaffolding molecule that is enriched at the node/paranode region. Dlg1 homologues have been located in several types of cellular junctions and play roles in cell polarity and membrane addition. We propose that Schwann cell–autonomous loss of Mtmr2–Dlg1 interaction dysregulates membrane homeostasis in the paranodal region, thereby producing outfolding and recurrent loops of myelin.


Journal of Cell Science | 2006

Loss of glial fibrillary acidic protein (GFAP) impairs Schwann cell proliferation and delays nerve regeneration after damage

Daniela Triolo; Giorgia Dina; Isabella Lorenzetti; Maria Chiara Malaguti; Paolo Morana; Ubaldo Del Carro; Giancarlo Comi; Albee Messing; Angelo Quattrini; Stefano C. Previtali

Axonal loss causes disabling and permanent deficits in many peripheral neuropathies, and may result from inefficient nerve regeneration due to a defective relationship between Schwann cells, axons and the extracellular matrix. These interactions are mediated by surface receptors and transduced by cytoskeletal molecules. We investigated whether peripheral nerve regeneration is perturbed in mice that lack glial fibrillary acidic protein (GFAP), a Schwann-cell-specific cytoskeleton constituent upregulated after damage. Peripheral nerves develop and function normally in GFAP-null mice. However, axonal regeneration after damage was delayed. Mutant Schwann cells maintained the ability to dedifferentiate but showed defective proliferation, a key event for successful nerve regeneration. We also showed that GFAP and the other Schwann-cell-intermediate filament vimentin physically interact in two distinct signaling pathways involved in proliferation and nerve regeneration. GFAP binds integrin αvβ8, which initiates mitotic signals soon after damage by interacting with fibrin. Consistently, ERK phosphorylation was reduced in crushed GFAP-null nerves. Vimentin instead binds integrin α5β1, which regulates proliferation and differentiation later in regeneration, and may compensate for the absence of GFAP in mutant mice. GFAP might contribute to form macro-complexes to initiate mitogenic and differentiating signaling for efficient nerve regeneration.


The Journal of Neuroscience | 2005

Loss of Mtmr2 Phosphatase in Schwann Cells But Not in Motor Neurons Causes Charcot-Marie-Tooth Type 4B1 Neuropathy with Myelin Outfoldings

Annalisa Bolis; Simona Bussini; Giorgia Dina; Celia Pardini; Stefano C. Previtali; Mc Malaguti; Paolo Morana; Ubaldo Del Carro; Maria Laura Feltri; Angelo Quattrini; Lawrence Wrabetz; Alessandra Bolino

Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth type 4B1 (CMT4B1). This disorder is characterized by childhood onset of weakness and sensory loss, severely decreased nerve conduction velocity, demyelination in the nerve with myelin outfoldings, and severe functional impairment of affected patients, mainly resulting from loss of myelinated fibers in the nerve. We recently generated Mtmr2-nullneo mice, which show a dysmyelinating neuropathy with myelin outfoldings, thus reproducing human CMT4B1. Mtmr2 is detected in both Schwann cells and neurons, in which it interacts with discs large 1/synapse-associated protein 97 and neurofilament light chain, respectively. Here, we specifically ablated Mtmr2 in either Schwann cells or motor neurons. Disruption of Mtmr2 in Schwann cells produced a dysmyelinating phenotype very similar to that of the Mtmr2-nullneo mouse. Disruption of Mtmr2 in motor neurons does not provoke myelin outfoldings nor axonal defects. We propose that loss of Mtmr2 in Schwann cells, but not in motor neurons, is both sufficient and necessary to cause CMT4B1 neuropathy. Thus, therapeutical approaches might be designed in the future to specifically deliver the Mtmr2 phospholipid phosphatase to Schwann cells in affected nerves.


The Journal of Neuroscience | 2008

α6β4 Integrin and Dystroglycan Cooperate to Stabilize the Myelin Sheath

Alessandro Nodari; Stefano C. Previtali; Gabriele Dati; Simona Occhi; Felipe A. Court; Cristina Colombelli; Desirée Zambroni; Giorgia Dina; Ubaldo Del Carro; Kevin P. Campbell; Angelo Quattrini; Lawrence Wrabetz; M. Laura Feltri

Schwann cells integrate signals deriving from the axon and the basal lamina to myelinate peripheral nerves. Integrin α6β4 is a laminin receptor synthesized by Schwann cells and displayed apposed to the basal lamina. α6β4 integrin expression in Schwann cells is induced by axons at the onset of myelination, and rises in adulthood. The β4 chain has a uniquely long cytoplasmic domain that interacts with intermediate filaments such as dystonin, important in peripheral myelination. Furthermore, α6β4 integrin binds peripheral myelin protein 22, whose alteration causes the most common demyelinating hereditary neuropathy. All these data suggest a role for α6β4 integrin in peripheral nerve myelination. Here we show that ablating α6β4 integrin specifically in Schwann cells of transgenic mice does not affect peripheral nerve development, myelin formation, maturation, or regeneration. However, consistent with maximal expression in adult nerves, α6β4 integrin-null myelin is more prone to abnormal folding with aging. When the laminin receptor dystroglycan is also ablated, major folding abnormalities occur, associated with acute demyelination in some peripheral nervous system districts. These data indicate that, similar to its role in skin, α6β4 integrin confers stability to myelin in peripheral nerves.


PLOS Genetics | 2011

Genetic Interaction between MTMR2 and FIG4 Phospholipid Phosphatases Involved in Charcot-Marie-Tooth Neuropathies

Ilaria Vaccari; Giorgia Dina; Hélène Tronchère; Emily L. Kaufman; Gaëtan Chicanne; Federica Cerri; Lawrence Wrabetz; Bernard Payrastre; Angelo Quattrini; Lois S. Weisman; Miriam H. Meisler; Alessandra Bolino

We previously reported that autosomal recessive demyelinating Charcot-Marie-Tooth (CMT) type 4B1 neuropathy with myelin outfoldings is caused by loss of MTMR2 (Myotubularin-related 2) in humans, and we created a faithful mouse model of the disease. MTMR2 dephosphorylates both PtdIns3P and PtdIns(3,5)P 2, thereby regulating membrane trafficking. However, the function of MTMR2 and the role of the MTMR2 phospholipid phosphatase activity in vivo in the nerve still remain to be assessed. Mutations in FIG4 are associated with CMT4J neuropathy characterized by both axonal and myelin damage in peripheral nerve. Loss of Fig4 function in the plt (pale tremor) mouse produces spongiform degeneration of the brain and peripheral neuropathy. Since FIG4 has a role in generation of PtdIns(3,5)P 2 and MTMR2 catalyzes its dephosphorylation, these two phosphatases might be expected to have opposite effects in the control of PtdIns(3,5)P 2 homeostasis and their mutations might have compensatory effects in vivo. To explore the role of the MTMR2 phospholipid phosphatase activity in vivo, we generated and characterized the Mtmr2/Fig4 double null mutant mice. Here we provide strong evidence that Mtmr2 and Fig4 functionally interact in both Schwann cells and neurons, and we reveal for the first time a role of Mtmr2 in neurons in vivo. Our results also suggest that imbalance of PtdIns(3,5)P 2 is at the basis of altered longitudinal myelin growth and of myelin outfolding formation. Reduction of Fig4 by null heterozygosity and downregulation of PIKfyve both rescue Mtmr2-null myelin outfoldings in vivo and in vitro.


Molecular and Cellular Neuroscience | 2003

Schwann cells synthesize α7β1 integrin which is dispensable for peripheral nerve development and myelination

Stefano C. Previtali; Giorgia Dina; A Nodari; M Fasolini; L Wrabetz; Ulrike Mayer; M.L Feltri; Angelo Quattrini

Abstract Defects in laminins or laminin receptors are responsible for various neuromuscular disorders, including peripheral neuropathies. Interactions between Schwann cells and their basal lamina are fundamental to peripheral nerve development and successful myelination. Selected laminins are expressed in the endoneurium, and their receptors are developmentally regulated during peripheral nerve formation. Loss-of-function mutations have confirmed the importance and the role of some of these molecules. Here we show for the first time that another laminin receptor, α7β1 integrin, previously described only in neurons, is also expressed in Schwann cells. The expression of α7 appears postnatally, such that α7β1 is the last laminin receptor expressed by differentiating Schwann cells. Genetic inactivation of the α7 subunit in mice does not affect peripheral nerve formation or the expression of other laminin receptors. Of note, α7β1 is not necessary for basal lamina formation and myelination. Nonetheless, these data taken together with the previous demonstration of impaired axonal regrowth in α7-null mice suggest a possible Schwann cell-autonomous role for α7 in nerve regeneration.


Journal of Clinical Investigation | 2005

Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia

Marinella Pirozzi; Angelo Quattrini; Gennaro Andolfi; Giorgia Dina; Maria Chiara Malaguti; Alberto Auricchio; Elena I. Rugarli

Degeneration of peripheral motor axons is a common feature of several debilitating diseases including complicated forms of hereditary spastic paraplegia. One such form is caused by loss of the mitochondrial energy-dependent protease paraplegin. Paraplegin-deficient mice display a progressive degeneration in several axonal tracts, characterized by the accumulation of morphological abnormal mitochondria. We show that adenoassociated virus-mediated (AAV-mediated) intramuscular delivery of paraplegin halted the progression of neuropathological changes and rescued mitochondrial morphology in the peripheral nerves of paraplegin-deficient mice. One single injection before onset of symptoms improved the motor performance of paraplegin-deficient mice for up to 10 months, indicating that the peripheral neuropathy contributes to the clinical phenotype. This study provides a proof of principle that gene transfer may be an effective therapeutic option for patients with paraplegin deficiency and demonstrates that AAV vectors can be successfully employed for retrograde delivery of an intracellular protein to spinal motor neurons, opening new perspectives for several hereditary axonal neuropathies of the peripheral nerves.


Molecular and Cellular Neuroscience | 2010

Cxcl10 enhances blood cells migration in the sub-ventricular zone of mice affected by experimental autoimmune encephalomyelitis.

Luca Muzio; Francesca Cavasinni; Cinzia Marinaro; Andrea Bergamaschi; Alessandra Bergami; Cristina Porcheri; Federica Cerri; Giorgia Dina; Angelo Quattrini; Giancarlo Comi; Roberto Furlan; Gianvito Martino

The peri-ventricular area of the forebrain constitutes a preferential site of inflammation in multiple sclerosis, and the sub-ventricular zone (SvZ) is functionally altered in its animal model experimental autoimmune encephalomyelitis (EAE). The reasons for this preferential localization are still poorly understood. We show here that, in EAE mice, blood-derived macrophages, T and B cells and microglia (Mg) from the surrounding parenchyma preferentially accumulate within the SvZ, deranging its cytoarchitecture. We found that the chemokine Cxcl10 is constitutively expressed by a subset of cells within the SvZ, constituting a primary chemo-attractant signal for activated T cells. During EAE, T cells and macrophages infiltrating the SvZ in turn secrete pro-inflammatory cytokines such as TNFalpha and IFNgamma capable to induce Mg cells accumulation and SvZ derangement. Accordingly, lentiviral-mediated over-expression of IFNgamma or TNFalpha in the healthy SvZ mimics Mg/microglia recruitment occurring during EAE, while Cxcl10 over-expression in the SvZ is able to increase the frequency of peri-ventricular inflammatory lesions only in EAE mice. Finally, we show, by RT-PCR and in situ hybridization, that Cxcl10 is expressed also in the healthy human SvZ, suggesting a possible molecular parallelism between multiple sclerosis and EAE.


Nature Neuroscience | 2014

Prostaglandin D2 synthase/GPR44: a signaling axis in PNS myelination

Amelia Trimarco; Maria Grazia Forese; Valentina Alfieri; Alessandra Lucente; Paola Brambilla; Giorgia Dina; Damiana Pieragostino; Paolo Sacchetta; Yoshihiro Urade; Brigitte Boizet-Bonhoure; Filippo Martinelli Boneschi; Angelo Quattrini; Carla Taveggia

Neuregulin 1 type III is processed following regulated intramembrane proteolysis, which allows communication from the plasma membrane to the nucleus. We found that the intracellular domain of neuregulin 1 type III upregulated the prostaglandin D2 synthase (L-pgds, also known as Ptgds) gene, which, together with the G protein–coupled receptor Gpr44, forms a previously unknown pathway in PNS myelination. Neuronal L-PGDS is secreted and produces the PGD2 prostanoid, a ligand of Gpr44. We found that mice lacking L-PGDS were hypomyelinated. Consistent with this, specific inhibition of L-PGDS activity impaired in vitro myelination and caused myelin damage. Furthermore, in vivo ablation and in vitro knockdown of glial Gpr44 impaired myelination. Finally, we identified Nfatc4, a key transcription factor for myelination, as one of the downstream effectors of PGD2 activity in Schwann cells. Thus, L-PGDS and Gpr44 are previously unknown components of an axo-glial interaction that controls PNS myelination and possibly myelin maintenance.

Collaboration


Dive into the Giorgia Dina's collaboration.

Top Co-Authors

Avatar

Angelo Quattrini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Stefano C. Previtali

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Alessandra Bolino

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Giancarlo Comi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Ubaldo Del Carro

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniela Triolo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Federica Cerri

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Emanuela Porrello

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge