Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgia Fugallo is active.

Publication


Featured researches published by Giorgia Fugallo.


Nano Letters | 2014

Thermal conductivity of graphene and graphite: collective excitations and mean free paths.

Giorgia Fugallo; Andrea Cepellotti; Lorenzo Paulatto; Michele Lazzeri; Nicola Marzari; Francesco Mauri

We characterize the thermal conductivity of graphite, monolayer graphene, graphane, fluorographane, and bilayer graphene, solving exactly the Boltzmann transport equation for phonons, with phonon-phonon collision rates obtained from density functional perturbation theory. For graphite, the results are found to be in excellent agreement with experiments; notably, the thermal conductivity is 1 order of magnitude larger than what found by solving the Boltzmann equation in the single mode approximation, commonly used to describe heat transport. For graphene, we point out that a meaningful value of intrinsic thermal conductivity at room temperature can be obtained only for sample sizes of the order of 1 mm, something not considered previously. This unusual requirement is because collective phonon excitations, and not single phonons, are the main heat carriers in these materials; these excitations are characterized by mean free paths of the order of hundreds of micrometers. As a result, even Fouriers law becomes questionable in typical sample sizes, because its statistical nature makes it applicable only in the thermodynamic limit to systems larger than a few mean free paths. Finally, we discuss the effects of isotopic disorder, strain, and chemical functionalization on thermal performance. Only chemical functionalization is found to play an important role, decreasing the conductivity by a factor of 2 in hydrogenated graphene, and by 1 order of magnitude in fluorogenated graphene.


Journal of Physics: Condensed Matter | 2017

Advanced capabilities for materials modelling with Quantum ESPRESSO

Paolo Giannozzi; O. Andreussi; T. Brumme; O. Bunau; M. Buongiorno Nardelli; Matteo Calandra; Roberto Car; Carlo Cavazzoni; D. Ceresoli; Matteo Cococcioni; Nicola Colonna; I. Carnimeo; A. Dal Corso; S. de Gironcoli; P. Delugas; Robert A. DiStasio; Andrea Ferretti; A. Floris; Guido Fratesi; Giorgia Fugallo; Ralph Gebauer; Uwe Gerstmann; Feliciano Giustino; T. Gorni; Junteng Jia; M. Kawamura; Hsin-Yu Ko; Anton Kokalj; E. Küçükbenli; Michele Lazzeri

Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.


Nature Communications | 2015

Phonon hydrodynamics in two-dimensional materials

Andrea Cepellotti; Giorgia Fugallo; Lorenzo Paulatto; Michele Lazzeri; Francesco Mauri; Nicola Marzari

The conduction of heat in two dimensions displays a wealth of fascinating phenomena of key relevance to the scientific understanding and technological applications of graphene and related materials. Here, we use density-functional perturbation theory and an exact, variational solution of the Boltzmann transport equation to study fully from first-principles phonon transport and heat conductivity in graphene, boron nitride, molybdenum disulphide and the functionalized derivatives graphane and fluorographene. In all these materials, and at variance with typical three-dimensional solids, normal processes keep dominating over Umklapp scattering well-above cryogenic conditions, extending to room temperature and more. As a result, novel regimes emerge, with Poiseuille and Ziman hydrodynamics, hitherto typically confined to ultra-low temperatures, characterizing transport at ordinary conditions. Most remarkably, several of these two-dimensional materials admit wave-like heat diffusion, with second sound present at room temperature and above in graphene, boron nitride and graphane.


Physical Review B | 2013

Ab initiovariational approach for evaluating lattice thermal conductivity

Giorgia Fugallo; Michele Lazzeri; Lorenzo Paulatto; Francesco Mauri

We present a first-principles theoretical approach for evaluating the lattice thermal conductivity based on the exact solution of the Boltzmann transport equation. We use the variational principle and the conjugate gradient scheme, which provide us with an algorithm faster than the one previously used in literature and able to always converge to the exact solution [Omini and Sparavigna, Physica B: Condens. Matter 212, 101 (1995)]. Three-phonon normal and umklapp collisions, isotope scattering, and border effects are rigorously treated in the calculation. Good agreement with experimental data for diamond is found. Moreover we show that by growing more enriched diamond samples it is possible to achieve values of thermal conductivity up to three times larger than those commonly observed in isotopically enriched diamond samples with 99.93% C12 and 0.07 C13.


Journal of Physical Chemistry B | 2015

Structural Properties of Green Tea Catechins

Dominic Botten; Giorgia Fugallo; Franca Fraternali; Carla Molteni

Green tea catechins are polyphenols which are believed to provide health benefits; they are marketed as health supplements and are studied for their potential effects on a variety of medical conditions. However, their mechanisms of action and interaction with the environment at the molecular level are still not well-understood. Here, by means of atomistic simulations, we explore the structural properties of four green tea catechins, in the gas phase and water solution: specifically, (-)-epigallocatechin-3-gallate, which is the most abundant, (-)-epicatechin-3-gallate, (-)-epigallocatechin-3-O-(3-O-methyl)-gallate, and (-)-epigallocatechin. We characterize the free energy conformational landscapes of these catechins at ambient conditions, as a function of the torsional degrees of freedom of the pholyphenolic rings, determining the stable conformers and their connections. We show that these free energy landscapes are only subtly influenced by the interactions with the solvent and by the structural details of the polyphenolic rings. However, the number and position of the hydroxyl groups (or their sustituents) and the presence/absence of the galloyl moiety have significant impact on the selected catechin solvation shells and hydrogen bond capabilities, which are ultimately linked to their ability to interact with and affect the biological environment.


Physical Review B | 2015

Exciton energy-momentum map of hexagonal boron nitride

Giorgia Fugallo; Matteo Aramini; Jaakko Koskelo; Kenji Watanabe; Takashi Taniguchi; Mikko Hakala; Simo Huotari; Matteo Gatti; Francesco Sottile

Understanding and controlling the way excitons propagate in solids is a key for tailoring materials with improved optoelectronic properties. A fundamental step in this direction is the determination of the exciton energy-momentum dispersion. Here, thanks to the solution of the parameter-free Bethe-Salpeter equation (BSE), we draw and explain the exciton energy-momentum map of hexagonal boron nitride (h-BN) in the first three Brillouin zones. We show that h-BN displays strong excitonic effects not only in the optical spectra at vanishing momentum q, as previously reported, but also at large q. We validate our theoretical predictions by assessing the calculated exciton map by means of an inelastic x-ray scattering (IXS) experiment. Moreover, we solve the discrepancies between previous experimental data and calculations, proving then that the BSE is highly accurate through the whole momentum range. Therefore, these results put forward the combination BSE and IXS as the tool of choice for addressing the exciton dynamics in complex materials.


Physical Review B | 2017

Excitons in van der Waals materials: From monolayer to bulk hexagonal boron nitride

Jaakko Koskelo; Giorgia Fugallo; Mikko Hakala; Matteo Gatti; Francesco Sottile; Pierluigi Cudazzo

We present a general picture of the exciton properties of layered materials in terms of the excitations of their single-layer building blocks. To this end, we derive a model excitonic hamiltonian by drawing an analogy with molecular crystals, which are other prototypical van der Waals materials. We employ this simplified model to analyse in detail the excitation spectrum of hexagonal boron nitride (hBN) that we have obtained from the {\it ab initio} solution of the many-body Bethe-Salpeter equation as a function of momentum. In this way we identify the character of the lowest-energy excitons in hBN, discuss the effects of the interlayer hopping and the electron-hole exchange interaction on the exciton dispersion, and illustrate the relation between exciton and plasmon excitations in layered materials.


PLOS ONE | 2013

A Computational Exploration of the Interactions of the Green Tea Polyphenol (–)-Epigallocatechin 3-Gallate with Cardiac Muscle Troponin C

Dominic Botten; Giorgia Fugallo; Franca Fraternali; Carla Molteni

Thanks to its polyphenols and phytochemicals, green tea is believed to have a number of health benefits, including protecting from heart disease, but its mechanism of action at the molecular level is still not understood. Here we explore, by means of atomistic simulations, how the most abundant of the green tea polyphenols, (–)-Epigallocatechin 3-Gallate (EGCg), interacts with the structural C terminal domain of cardiac muscle troponin C (cCTnC), a calcium binding protein that plays an important role in heart contractions. We find that EGCg favourably binds to the hydrophobic cleft of cCTnC consistently with solution NMR experiments. It also binds to cCTnC in the presence of the anchoring region of troponin I (cTnI(34–71)) at the interface between the E and H helices. This appears to affect the strength of the interaction between cCTnC and cTnI(34–71) and also counter-acts the effects of the Gly159Asp mutation, related to dilated cardiomyopathy. Our simulations support the picture that EGCg interacting with the C terminal domain of troponin C may help in regulating the calcium signalling either through competitive binding with the anchoring domain of cTnI or by affecting the interaction between cCTnC and cTnI(34–71).


Physical Chemistry Chemical Physics | 2010

Constant pressure molecular dynamics simulations for ellipsoidal, cylindrical and cuboidal nano-objects based on inertia tensor information

Clive Bealing; Giorgia Fugallo; Roman Martonak; Carla Molteni

We present an extension to a constant-pressure molecular dynamics method for ellipsoidal finite systems that allows one to deal with nano-objects of cylindrical and cuboidal shapes. The method is based on the inclusion of a pressure x volume term in the system Lagrangian, where the volume is defined as a function of the eigenvalues of the inertia tensor. We illustrate how such a method works for selected systems, including CdSe nanocrystals and nanorods, carbon nanotubes and NaCl nanocrystals over a range of pressures. We also assess its performance in comparison with the use of an auxiliary pressure transmitting medium.


Physical Review B | 2017

Direct observation of the band structure in bulk hexagonal boron nitride

Hugo Henck; Debora Pierucci; Giorgia Fugallo; José Avila; Guillaume Cassabois; Yannick J. Dappe; Mathieu G. Silly; Chaoyu Chen; Bernard Gil; Matteo Gatti; Francesco Sottile; Fausto Sirotti; Maria C. Asensio; Abdelkarim Ouerghi

Collaboration


Dive into the Giorgia Fugallo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Cepellotti

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Nicola Marzari

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge