Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Albertini is active.

Publication


Featured researches published by Giorgio Albertini.


Neuroscience | 2008

Abnormal Expression of Synaptic Proteins and Neurotrophin-3 in the Down Syndrome Mouse Model Ts65Dn

Gabriella Pollonini; Virginia Gao; Ausma Rabe; Sonia Palminiello; Giorgio Albertini; Cristina M. Alberini

Down syndrome (DS) results from triplication of the whole or distal part of human chromosome 21. Persons with DS suffer from deficits in learning and memory and cognitive functions in general, and, starting from early development, their brains show dendritic and spine structural alterations and cell loss. These defects concern many cortical brain regions as well as the hippocampus, which is known to play a critical role in memory and cognition. Most of these abnormalities are reproduced in the mouse model Ts65Dn, which is partially trisomic for the mouse chromosome 16 that is homologous to a portion of human chromosome 21. Thus, Ts65Dn is widely utilized as an animal model of DS. To better understand the molecular defects underlying the cognitive and particularly the memory impairments of DS, we investigated whether the expression of several molecules known to play critical roles in long-term synaptic plasticity and long-term memory in a variety of species is dysregulated in either the neonatal brain or adult hippocampus of Ts65Dn mice. We found abnormal expression of the synaptic proteins synaptophysin, microtubule-associated protein 2 (MAP2) and cyclin-dependent kinase 5 (CDK5) and of the neurotrophin-3 (NT-3). Both the neonatal brain and adult hippocampus revealed significant abnormalities. These results suggest that a dysregulation in the expression of neurotrophins as well as proteins involved in synaptic development and plasticity may play a potential role in the neural pathology of DS in humans.


Experimental Neurology | 2013

Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn

Elizabeth Kida; Ausma Rabe; Marius Walus; Giorgio Albertini; Adam A. Golabek

Running may affect the mood, behavior and neurochemistry of running animals. In the present study, we investigated whether voluntary daily running, sustained over several months, might improve cognition and motor function and modify the brain levels of selected proteins (SOD1, DYRK1A, MAP2, APP and synaptophysin) in Ts65Dn mice, a mouse model for Down syndrome (DS). Ts65Dn and age-matched wild-type mice, all females, had free access to a running wheel either from the time of weaning (post-weaning cohort) or from around 7 months of age (adult cohort). Sedentary female mice were housed in similar cages, without running wheels. Behavioral testing and evaluation of motor performance showed that running improved cognitive function and motor skills in Ts65Dn mice. However, while a dramatic improvement in the locomotor functions and learning of motor skills was observed in Ts65Dn mice from both post-weaning and adult cohorts, improved object memory was seen only in Ts65Dn mice that had free access to the wheel from weaning. The total levels of APP and MAP2ab were reduced and the levels of SOD1 were increased in the runners from the post-weaning cohort, while only the levels of MAP2ab and α-cleaved C-terminal fragments of APP were reduced in the adult group in comparison with sedentary trisomic mice. Hence, our study demonstrates that Ts65Dn females benefit from sustained voluntary physical exercise, more prominently if running starts early in life, providing further support to the idea that a properly designed physical exercise program could be a valuable adjuvant to future pharmacotherapy for DS.


Brain Research | 2008

Increased levels of carbonic anhydrase II in the developing Down syndrome brain

Sonia Palminiello; Elizabeth Kida; Kulbir Kaur; Marius Walus; Krystyna E. Wisniewski; Teresa Wierzba-Bobrowicz; Ausma Rabe; Giorgio Albertini; Adam A. Golabek

By using a proteomic approach, we found increased levels of carbonic anhydrase II (CA II) in the brain of Ts65Dn mice, a mouse model for Down syndrome (DS). Further immunoblot analyses showed that the levels of CA II are increased not only in the brain of adult Ts65Dn mice but also in the brain of infants and young children with DS. Cellular localization of the enzyme in human brain, predominantly in the oligodendroglia and primitive vessels in fetal brain and in the oligodendroglia and some GABAergic neurons postnatally, was similar in DS subjects and controls. Given the role of CA II in regulation of electrolyte and water balance and pH homeostasis, up-regulation of CA II may reflect a compensatory mechanism mobilized in response to structural/functional abnormalities in the developing DS brain. However, this up-regulation may also have an unfavorable effect by increasing susceptibility to seizures of children with DS.


Neuroscience | 2011

Form of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A nonphosphorylated at tyrosine 145 and 147 is enriched in the nuclei of astroglial cells, adult hippocampal progenitors, and some cholinergic axon terminals.

E. Kida; M. Walus; K. Jarząbek; Sonia Palminiello; Giorgio Albertini; Ausma Rabe; Y.W. Hwang; A.A. Golabek

Compelling lines of evidence indicate that overexpression of dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A) in subjects with trisomy 21 (Down syndrome[DS]) contributes to the abnormal structure and function of the DS brain. In the present study, we used a novel, phospho-dependent antibody recognizing DYRK1A only with nonphosphorylated tyrosine 145 and 147 (DYRK1A Tyr-145/147P(-)), to investigate the expression pattern of this DYRK1A species in trisomic and disomic human and mouse brains. Immunoblotting and dephosphorylation experiments demonstrated higher levels of DYRK1A Tyr-145/147P(-) in postnatal trisomic brains in comparison with controls (by ∼40%) than those of the DYRK1A visualized by three other N- and C-terminally directed antibodies to DYRK1A. By immunofluorescence, the immunoreactivity to DYRK1A Tyr-145/147P(-) was the strongest in the nuclei of astroglial cells, which contrasted with the predominantly neuronal localization of DYRK1A visualized by the three other antibodies to DYRK1A we used. In addition, DYRK1A Tyr-145/147P(-) was enriched in the nuclei of neuronal progenitors and newly born neurons in the adult hippocampal proliferative zone and also occurred in some cholinergic axonal terminals. Our data show a distinctive expression pattern of DYRK1A forms nonphosphorylated at Tyr-145 and Tyr-147 in the brain tissue and suggest that DS subjects may exhibit not only upregulation of total DYRK1A, but also more subtle differences in phosphorylation levels of this kinase in comparison with control individuals.


Journal of Neuroscience Research | 2014

Intracellular distribution of differentially phosphorylated dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A)

Wojciech Kaczmarski; Madhabi Barua; Bozena Mazur-Kolecka; Janusz Frackowiak; Wieslaw K. Dowjat; Pankaj Mehta; David C. Bolton; Yu Wen Hwang; Ausma Rabe; Giorgio Albertini; Jerzy Wegiel

The gene encoding dual‐specificity tyrosine phosphorylation‐regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age‐associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell‐compartment‐specific functions are associated with DYRK1A posttranslational modifications. Fractionation showed that, in both human and mouse brain, almost 80% of DYRK1A was associated with the cytoskeleton, and the remaining DYRK1A was present in the cytosolic and nuclear fractions. Coimmunoprecipitation revealed that DYRK1A in the brain cytoskeleton fraction forms complexes with filamentous actin, neurofilaments, and tubulin. Two‐dimensional gel analysis of the fractions revealed DYRK1A with distinct isoelectric points: 5.5–6.5 in the nucleus, 7.2–8.2 in the cytoskeleton, and 8.7 in the cytosol. Phosphate‐affinity gel electrophoresis demonstrated several bands of DYRK1A with different mobility shifts for nuclear, cytoskeletal, and cytosolic DYRK1A, indicating modification by phosphorylation. Mass spectrometry analysis disclosed one phosphorylated site in the cytosolic DYRK1A and multiple phosphorylated residues in the cytoskeletal DYRK1A, including two not previously described. This study supports the hypothesis that intracellular distribution and compartment‐specific functions of DYRK1A may depend on its phosphorylation pattern.


Brain Research | 2009

Upregulation of phosphorylated αB-crystallin in the brain of children and young adults with Down syndrome

Sonia Palminiello; Katarzyna Jarząbek; Kulbir Kaur; Marius Walus; Ausma Rabe; Giorgio Albertini; Adam A. Golabek; Elizabeth Kida

Our previous proteomic studies disclosed upregulation of alphaB-crystallin, a small heat shock protein, in the brain tissue of Ts65Dn mice, a mouse model for Down syndrome (DS). To validate data obtained in model animals, we studied at present the levels and distribution of total alphaB-crystallin and its forms phosphorylated at Ser-45 and Ser-59 in the brain tissues of DS subjects and age-matched controls at 4 months to 23 years of age. On immunoblots from frontal cortex and white matter, alphaB-crystallin and its form phosphorylated at Ser-59 were detectable already in infants, whereas alphaB-crystallin phosphorylated at Ser-45 appeared in small amounts in older children. Although the levels of total alphaB-crystallin were modestly increased in DS subjects, the amounts of both phosphorylated forms were much higher (up to approximately 550%) in the group of older children and young adults with DS than in age-matched controls. Immunoreactivity to alphaB-crystallin occurred not only in a subset of oligodendrocytes and some subpial and perivascular astrocytes, which was reported earlier, but also in GFAP-positive astrocytes accumulating at the sites of ependymal injury as well as some GFAP/platelet-derived growth factor receptor alpha-positive cells in both DS and control brains, which is a novel observation. Given that the chaperone and anti-apoptotic activities of alphaB-crystallin are phosphorylation-dependent, we propose that enhanced phosphorylation of alphaB-crystallin in the brains of young DS subjects might reflect a cytoprotective mechanism mobilized in response to stress conditions induced or augmented by the effect of genes encoded by the triplicated chromosome 21.


Behavioural Brain Research | 2016

Widespread cerebellar transcriptome changes in Ts65Dn Down syndrome mouse model after lifelong running.

Marius Walus; Elizabeth Kida; Ausma Rabe; Giorgio Albertini; Adam A. Golabek

Our previous study showed an improvement in locomotor deficits after voluntary lifelong running in Ts65Dn mice, an animal model for Down syndrome (DS). In the present study, we employed mouse microarrays printed with 55,681 probes in an attempt to identify molecular changes in the cerebellar transcriptome that might contribute to the observed behavioral benefits of voluntary long-term running in Ts65Dn mice. Euploid mice were processed in parallel for comparative purposes in some analyses. We found that running significantly changed the expression of 4,315 genes in the cerebellum of Ts65Dn mice, over five times more than in euploid animals, up-regulating 1,991 and down-regulating 2,324 genes. Functional analysis of these genes revealed a significant enrichment of 92 terms in the biological process category, including regulation of biosynthesis and metabolism, protein modification, phosphate metabolism, synaptic transmission, development, regulation of cell death/apoptosis, protein transport, development, neurogenesis and neuron differentiation. The KEGG pathway database identified 18 pathways that are up-regulated and two that are down-regulated by running that were associated with learning, memory, cell signaling, proteolysis, regeneration, cell cycle, proliferation, growth, migration, and survival. Of six mRNA protein products we tested by immunoblotting, four showed significant running-associated changes in their levels, the most prominent in glutaminergic receptor metabotropic 1, and two showed changes that were close to significant. Thus, unexpectedly, our data point to the high molecular plasticity of Ts65Dn mouse cerebellum, which translated into humans with DS, suggests that the motor deficits of individuals with DS could markedly benefit from prolonged exercise.


Journal of Neuropathology and Experimental Neurology | 2010

Molecular Chaperone αB-Crystallin Is Expressed in the Human Fetal Telencephalon at Midgestation by a Subset of Progenitor Cells

Elizabeth Kida; Teresa Wierzba-Bobrowicz; Sonia Palminiello; Kulbir Kaur; Katarzyna Jarzabek; Marius Walus; Giorgio Albertini; Adam A. Golabek

&agr;B-crystallin (CRYAB) is a small heat shock protein with a chaperoning activity that is present in the postnatal healthy human brain in oligodendrocytes and in a few astrocytes. The involvement of CRYAB in cell differentiation, proliferation, signaling, cytoskeletal assembly, and apoptosis in various model systems has suggested that it might also play a role in the developing human brain. We analyzed the distribution and the levels of this molecular chaperone in healthy and polygenetically compromised (Down syndrome [DS]) human telencephalon at midgestation. We demonstrate that CRYAB is expressed in a temporospatial pattern by numerous radial glial cells and some early oligodendrocyte progenitors, including dividing cells, as well as a few astroglial cells in both healthy and DS fetalbrains. We also found abundant phosphorylation of CRYAB atSer-59, which mediates its antiapoptotic and cytoskeletal functions. There was only marginal phosphorylation at Ser-45.In contrast to our earlier study in young DS subjects, upregulation of phosphorylated CRYAB occurred rarely in DS fetuses. The distribution, the timing of appearance, and the results of colocalization studies suggest that CRYAB assists in the biological processes associated with developmental remodeling/differentiation and proliferation of select subpopulations of progenitor cells in human fetal brain at midgestation.


Journal of Neuroscience Research | 2014

Intracellular distribution of differentially phosphorylated dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A): DYRK1A Phosphorylation and Distribution

Wojciech Kaczmarski; Madhabi Barua; Bozena Mazur-Kolecka; Janusz Frackowiak; Wieslaw K. Dowjat; Pankaj Mehta; David C. Bolton; Yu-Wen Hwang; Ausma Rabe; Giorgio Albertini; Jerzy Wegiel

The gene encoding dual‐specificity tyrosine phosphorylation‐regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age‐associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell‐compartment‐specific functions are associated with DYRK1A posttranslational modifications. Fractionation showed that, in both human and mouse brain, almost 80% of DYRK1A was associated with the cytoskeleton, and the remaining DYRK1A was present in the cytosolic and nuclear fractions. Coimmunoprecipitation revealed that DYRK1A in the brain cytoskeleton fraction forms complexes with filamentous actin, neurofilaments, and tubulin. Two‐dimensional gel analysis of the fractions revealed DYRK1A with distinct isoelectric points: 5.5–6.5 in the nucleus, 7.2–8.2 in the cytoskeleton, and 8.7 in the cytosol. Phosphate‐affinity gel electrophoresis demonstrated several bands of DYRK1A with different mobility shifts for nuclear, cytoskeletal, and cytosolic DYRK1A, indicating modification by phosphorylation. Mass spectrometry analysis disclosed one phosphorylated site in the cytosolic DYRK1A and multiple phosphorylated residues in the cytoskeletal DYRK1A, including two not previously described. This study supports the hypothesis that intracellular distribution and compartment‐specific functions of DYRK1A may depend on its phosphorylation pattern.


Journal of Neuroscience Research | 2014

Intracellular Distribution of Differentially PhosphorylatedDual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A(DYRK1A)

Wojciech Kaczmarski; Madhabi Barua; Bozena Mazur-Kolecka; Janusz Frackowiak; Wieslaw K. Dowjat; Pankaj Mehta; David C. Bolton; Yu-Wen Hwang; Ausma Rabe; Giorgio Albertini; Jerzy Wegiel

The gene encoding dual‐specificity tyrosine phosphorylation‐regulated kinase 1A (DYRK1A) is located within the Down syndrome (DS) critical region of chromosome 21. DYRK1A interacts with a plethora of substrates in the cytosol, cytoskeleton, and nucleus. Its overexpression is a contributing factor to the developmental alterations and age‐associated pathology observed in DS. We hypothesized that the intracellular distribution of DYRK1A and cell‐compartment‐specific functions are associated with DYRK1A posttranslational modifications. Fractionation showed that, in both human and mouse brain, almost 80% of DYRK1A was associated with the cytoskeleton, and the remaining DYRK1A was present in the cytosolic and nuclear fractions. Coimmunoprecipitation revealed that DYRK1A in the brain cytoskeleton fraction forms complexes with filamentous actin, neurofilaments, and tubulin. Two‐dimensional gel analysis of the fractions revealed DYRK1A with distinct isoelectric points: 5.5–6.5 in the nucleus, 7.2–8.2 in the cytoskeleton, and 8.7 in the cytosol. Phosphate‐affinity gel electrophoresis demonstrated several bands of DYRK1A with different mobility shifts for nuclear, cytoskeletal, and cytosolic DYRK1A, indicating modification by phosphorylation. Mass spectrometry analysis disclosed one phosphorylated site in the cytosolic DYRK1A and multiple phosphorylated residues in the cytoskeletal DYRK1A, including two not previously described. This study supports the hypothesis that intracellular distribution and compartment‐specific functions of DYRK1A may depend on its phosphorylation pattern.

Collaboration


Dive into the Giorgio Albertini's collaboration.

Top Co-Authors

Avatar

Elizabeth Kida

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janusz Frackowiak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Madhabi Barua

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge