Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Bertorelle is active.

Publication


Featured researches published by Giorgio Bertorelle.


American Journal of Human Genetics | 2003

The Genetic Legacy of the Mongols

Tatiana Zerjal; Yali Xue; Giorgio Bertorelle; R. Spencer Wells; Weidong Bao; Suling Zhu; Raheel Qamar; Qasim Ayub; Aisha Mohyuddin; Songbin Fu; Li P; Nadira Yuldasheva; Ruslan Ruzibakiev; Jiujin Xu; Qunfang Shu; Ruofu Du; Huanming Yang; Elizabeth J. Z. Robinson; Tudevdagva Gerelsaikhan; Bumbein Dashnyam; S. Qasim Mehdi; Chris Tyler-Smith

We have identified a Y-chromosomal lineage with several unusual features. It was found in 16 populations throughout a large region of Asia, stretching from the Pacific to the Caspian Sea, and was present at high frequency: approximately 8% of the men in this region carry it, and it thus makes up approximately 0.5% of the world total. The pattern of variation within the lineage suggested that it originated in Mongolia approximately 1,000 years ago. Such a rapid spread cannot have occurred by chance; it must have been a result of selection. The lineage is carried by likely male-line descendants of Genghis Khan, and we therefore propose that it has spread by a novel form of social selection resulting from their behavior.


Nature Genetics | 2003

Gene-culture coevolution between cattle milk protein genes and human lactase genes

Albano Beja-Pereira; Gordon Luikart; Phillip R. England; Daniel G. Bradley; Oliver C Jann; Giorgio Bertorelle; Andrew T. Chamberlain; Telmo P Nunes; Stoitcho Metodiev; Nuno Ferrand; G. Erhardt

Milk from domestic cows has been a valuable food source for over 8,000 years, especially in lactose-tolerant human societies that exploit dairy breeds. We studied geographic patterns of variation in genes encoding the six most important milk proteins in 70 native European cattle breeds. We found substantial geographic coincidence between high diversity in cattle milk genes, locations of the European Neolithic cattle farming sites (>5,000 years ago) and present-day lactose tolerance in Europeans. This suggests a gene-culture coevolution between cattle and humans.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans.

David Caramelli; Carles Lalueza-Fox; Cristiano Vernesi; Martina Lari; Antonella Casoli; Francesco Mallegni; Brunetto Chiarelli; Isabelle Dupanloup; Jaume Bertranpetit; Guido Barbujani; Giorgio Bertorelle

During the late Pleistocene, early anatomically modern humans coexisted in Europe with the anatomically archaic Neandertals for some thousand years. Under the recent variants of the multiregional model of human evolution, modern and archaic forms were different but related populations within a single evolving species, and both have contributed to the gene pool of current humans. Conversely, the Out-of-Africa model considers the transition between Neandertals and anatomically modern humans as the result of a demographic replacement, and hence it predicts a genetic discontinuity between them. Following the most stringent current standards for validation of ancient DNA sequences, we typed the mtDNA hypervariable region I of two anatomically modern Homo sapiens sapiens individuals of the Cro-Magnon type dated at about 23 and 25 thousand years ago. Here we show that the mtDNAs of these individuals fall well within the range of variation of todays humans, but differ sharply from the available sequences of the chronologically closer Neandertals. This discontinuity is difficult to reconcile with the hypothesis that both Neandertals and early anatomically modern humans contributed to the current European gene pool.


BMC Evolutionary Biology | 2007

Genetic variation in Northern Thailand Hill Tribes: origins and relationships with social structure and linguistic differences

Davide Besaggio; Silvia Fuselli; Metawee Srikummool; Jatupol Kampuansai; Loredana Castrì; Chris Tyler-Smith; Mark Seielstad; Daoroong Kangwanpong; Giorgio Bertorelle

BackgroundEthnic minorities in Northern Thailand, often referred to as Hill Tribes, are considered an ideal model to study the different genetic impact of sex-specific migration rates expected in matrilocal (women remain in their natal villages after the marriage and men move to their wifes village) and patrilocal societies (the opposite is true). Previous studies identified such differences, but little is known about the possible interaction with another cultural factor that may potentially affect genetic diversity, i.e. linguistic differences. In addition, Hill Tribes started to migrate to Thailand in the last centuries from different Northern areas, but the history of these migrations, the level of genetic legacy with their places of origin, and the possible confounding effects related to this migration history in the patterns of genetic diversity, have not been analysed yet. Using both original and published data on the Hill Tribes and several other Asian populations, we focused on all these aspects.ResultsGenetic variation within population at mtDNA is lower in matrilocal, compared to patrilocal, tribes. The opposite is true for Y-chromosome microsatellites within the Sino-Tibetan linguistic family, but Hmong-Mien speaking patrilocal groups have a genetic diversity very similar to the matrilocal samples. Population divergence ranges between 5% and 14% at mtDNA sequences, and between 5% and 36% at Y- chromosomes STRs, and follows the sex-specific differences expected in patrilocal and matrilocal tribes. On the average, about 2 men and 14 women, and 4 men and 4 women, are exchanged in patrilocal and matrilocal tribes every generation, respectively. Most of the Hill Tribes in Thailand seem to preserve a genetic legacy with their likely geographic origin, with children adoption probably affecting this pattern in one tribe.ConclusionOverall, the sex specific genetic signature of different postmarital habits of residence in the Hill Tribes is robust. However, specific perturbations related to linguistic differences, population specific traits, and the complex migratory history of these groups, can be identified. Additional studies in different populations are needed, especially to obtain more precise estimates of the migration parameters.


Molecular Ecology | 2008

Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable?

Massimo Scandura; Laura Iacolina; B. Crestanello; E. Pecchioli; M. F. Di Benedetto; Vincenzo Russo; R. Davoli; Marco Apollonio; Giorgio Bertorelle

The European wild boar is an important game species, subjected to local extinctions and translocations in the past, and currently enormously and worryingly expanding in some areas where management is urgently required. Understanding the relative roles of ancient and recent events in shaping the genetic structure of this species is therefore not only an interesting scientific issue, but it represents also the basis for addressing future management strategies. In addition, several pig breeds descend from the European wild boar, but the geographical location of the domestication area(s) and the possible introgression of pig genomes into wild populations are still open questions. Here, we analysed the genetic variation in different wild boar populations in Europe. Ten polymorphic microsatellites were typed in 252 wild boars and the mtDNA control region was sequenced in a subset of 145 individuals. Some samples from different pig breeds were also analysed. Our results, which were obtained considering also 612 published mtDNA sequences, suggest that (i) most populations are similarly differentiated, but the major discontinuity is found along the Alps; (ii) except for the Italian populations, European wild boars show the signature of a postglacial demographic expansion; (iii) Italian populations seem to preserve a high proportion of preglaciation diversity; (iv) the demographic decline which occurred in some areas in the last few centuries did not produce a noticeable reduction of genetic variation; (v) signs of human‐mediated gene flow among populations are weak, although in some regions the effects of translocations are detectable and a low degree of pig introgression can be identified; (vi) the hypothesis of an independent domestication centre in Italy is not supported by our data, which in turn confirm that Central European wild boar might have represented an important source for domestic breeds. We can therefore conclude that recent human activities had a limited effect on the wild boar genetic structure. It follows that areas with high variation and differentiation represent natural reservoirs of genetic diversity to be protected avoiding translocations. In this context controlling some populations by hunting is not expected to affect significantly genetic variation in this species.


Molecular Ecology | 2003

The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): A microsatellite analysis

Cristiano Vernesi; B. Crestanello; E. Pecchioli; D. Tartari; David Caramelli; Heidi C. Hauffe; Giorgio Bertorelle

The reintroduction of wild boar from central Europe after World War II has contributed substantially to the range expansion of this species in Italy, where indiscriminate hunting in earlier times resulted in extreme demographic reduction. However, the genetic impact of such processes is not well‐understood. In this study, 105 individuals from Italian and Hungarian wild boar populations were characterized for nine autosomal microsatellite loci. The Hungarian samples, and two central Italian samples from protected areas (parks) where reintroduction is not documented, were assumed to be representative of the genetic composition of the source and the target populations in the reintroduction process, respectively. Animals hunted in the wild in the Florence area of Tuscany (Italy) were then studied to identify the effects of reintroduction. The results we obtained can be summarized as follows: (i) none of the populations analysed shows genetic evidence of demographic decline; (ii) the three parental populations from Italy and Hungary are genetically distinct; however, the low level of divergence appears in conflict with the naming of the Italian and the European subspecies (Sus scrofa majori and Sus scrofa scrofa, respectively); in addition, the Italian groups appear to be as divergent from each other as they are from the Hungarian population; (iii) most of the individuals hunted near Florence are genetically intermediate between the parental groups, suggesting that hybridization has occurred in this area, the average introgression of Hungarian genotypes is 13%, but ≈ 45% of the genetic pool of these individuals can not be directly attributed to any of the parental populations we analysed; (iv) analysis of microsatellite loci, though in a limited number, is an important tool for estimating the genetic effect of reintroduction in the wild boar, and therefore for the development of conservation and management strategies for this species.


American Journal of Human Genetics | 1998

Evidence for Paleolithic and Neolithic gene flow in Europe.

Guido Barbujani; Giorgio Bertorelle; Lounès Chikhi

We thank Hans Bandelt, Peter Forster, Luca Cavalli-Sforza, and Eric Minch for giving us access to their unpublished letters and for discussing them with us. We also thank Italo Barrai for fruitful discussion. Of course, these individuals do not share all the views expressed here.


Journal of Molecular Evolution | 2003

A recent shift from polygyny to monogamy in humans is suggested by the analysis of worldwide Y-chromosome diversity.

Isabelle Dupanloup; Luísa Pereira; Giorgio Bertorelle; Francesc Calafell; Maria João Prata; António Amorim; Guido Barbujani

Molecular genetic data contain information on the history of populations. Evidence of prehistoric demographic expansions has been detected in the mitochondrial diversity of most human populations and in a Y-chromosome STR analysis, but not in a previous study of 11 Y-chromosome SNPs in Europeans. In this paper, we show that mismatch distributions and tests of mutation/drift equilibrium based on up to 166 Y-chromosome SNPs, in 46 samples from all continents, also fail to support an increase of the male effective population size. Computer simulations show that the low nuclear versus mitochondrial mutation rates cannot explain these results. However, ascertainment bias, i.e., when only highly variable SNP sites are typed, may be concealing any Y SNPs evidence for a recent, but not an ancient, increase in male effective population sizes. The results of our SNP analyses can be reconciled with the expansion of male effective population sizes inferred from STR loci, and with mitochondrial evidence, by admitting that humans were essentially polygynous during much of their history. As a consequence, until recently only a few men may have contributed a large fraction of the Y-chromosome pool at every generation. The number of breeding males may have increased, and the variance of their reproductive success may have decreased, through a recent shift from polygyny to monogamy, which is supported by ethnological data and possibly accompanied the shift from mobile to sedentary communities.


Current Biology | 2006

A highly divergent mtDNA sequence in a Neandertal individual from Italy

David Caramelli; Carles Lalueza-Fox; Silvana Condemi; Laura Longo; Lucio Milani; Alessandro Manfredini; Michelle de Saint Pierre; Francesca Adoni; Martina Lari; Paolo Giunti; Stefano Ricci; Antonella Casoli; Francesc Calafell; Francesco Mallegni; Jaume Bertranpetit; Roscoe Stanyon; Giorgio Bertorelle; Guido Barbujani

Neandertals are documented in Europe and Western Asia from about 230,000 to 29,000 years ago. Analyses of mitochondrial DNA (mtDNA) from Neandertal samples [1,2] and other analyses [3–5] appear incompatible with the hypothesis that Neandertals are direct ancestors of modern Europeans [6,7]. However, there are broad geographic gaps in the sampling of Neandertal DNA diversity. Here, we describe the sequence of the first mitochondrial hypervariable region (HVR1) in a new specimen from Monti Lessini (MLS) in Northern Italy.


PLOS ONE | 2011

Citizen Science Reveals Unexpected Continental-Scale Evolutionary Change in a Model Organism

Jonathan Silvertown; L. M. Cook; Robert A. D. Cameron; Mike Dodd; Kevin McConway; Jenny Worthington; Peter W. Skelton; Christian Anton; Oliver Bossdorf; Bruno Baur; Menno Schilthuizen; B. Fontaine; Helmut Sattmann; Giorgio Bertorelle; Maria Correia; Cristina da Cunha Hueb Barata de Oliveira; Beata M. Pokryszko; Małgorzata Ożgo; Arturs Stalažs; Eoin Gill; Üllar Rammul; Péter Sólymos; Zoltán Fehér; Xavier Juan

Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the brown-lipped banded snail (Cepaea nemoralis). This species is sensitive to its thermal environment and exhibits several polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C. nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009 through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the colour phenotype with the highest albedo (yellow) was shown to have persisted and a difference in colour frequency between woodland and more open habitats was confirmed, but there was no general increase in the frequency of yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation. By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating that the influence of other selective agents, possibly related to changing predation pressure and habitat change with effects on micro-climate.

Collaboration


Dive into the Giorgio Bertorelle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Mona

École pratique des hautes études

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge