Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Bonmassar is active.

Publication


Featured researches published by Giorgio Bonmassar.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Task-modulated “what” and “where” pathways in human auditory cortex

Jyrki Ahveninen; Iiro P. Jääskeläinen; Tommi Raij; Giorgio Bonmassar; Sasha Devore; Matti Hämäläinen; Sari Levänen; Fa-Hsuan Lin; Mikko Sams; Barbara G. Shinn-Cunningham; Thomas Witzel; John W. Belliveau

Human neuroimaging studies suggest that localization and identification of relevant auditory objects are accomplished via parallel parietal-to-lateral-prefrontal “where” and anterior-temporal-to-inferior-frontal “what” pathways, respectively. Using combined hemodynamic (functional MRI) and electromagnetic (magnetoencephalography) measurements, we investigated whether such dual pathways exist already in the human nonprimary auditory cortex, as suggested by animal models, and whether selective attention facilitates sound localization and identification by modulating these pathways in a feature-specific fashion. We found a double dissociation in response adaptation to sound pairs with phonetic vs. spatial sound changes, demonstrating that the human nonprimary auditory cortex indeed processes speech-sound identity and location in parallel anterior “what” (in anterolateral Heschl’s gyrus, anterior superior temporal gyrus, and posterior planum polare) and posterior “where” (in planum temporale and posterior superior temporal gyrus) pathways as early as ≈70–150 ms from stimulus onset. Our data further show that the “where” pathway is activated ≈30 ms earlier than the “what” pathway, possibly enabling the brain to use top-down spatial information in auditory object perception. Notably, selectively attending to phonetic content modulated response adaptation in the “what” pathway, whereas attending to sound location produced analogous effects in the “where” pathway. This finding suggests that selective-attention effects are feature-specific in the human nonprimary auditory cortex and that they arise from enhanced tuning of receptive fields of task-relevant neuronal populations.


Science | 2008

Bottom-Up Dependent Gating of Frontal Signals in Early Visual Cortex

L.B. Ekstrom; Pieter R. Roelfsema; John Arsenault; Giorgio Bonmassar; Wim Vanduffel

The frontal eye field (FEF) is one of several cortical regions thought to modulate sensory inputs. Moreover, several hypotheses suggest that the FEF can only modulate early visual areas in the presence of a visual stimulus. To test for bottom-up gating of frontal signals, we microstimulated subregions in the FEF of two monkeys and measured the effects throughout the brain with functional magnetic resonance imaging. The activity of higher-order visual areas was strongly modulated by FEF stimulation, independent of visual stimulation. In contrast, FEF stimulation induced a topographically specific pattern of enhancement and suppression in early visual areas, but only in the presence of a visual stimulus. Modulation strength depended on stimulus contrast and on the presence of distractors. We conclude that bottom-up activation is needed to enable top-down modulation of early visual cortex and that stimulus saliency determines the strength of this modulation.


NeuroImage | 2002

Motion and Ballistocardiogram Artifact Removal for Interleaved Recording of EEG and EPs during MRI

Giorgio Bonmassar; Patrick L. Purdon; Iiro P. Jääskeläinen; Keith H. Chiappa; Victor Solo; Emery N. Brown; John W. Belliveau

Artifacts generated by motion (e.g., ballistocardiac) of the head inside a high magnetic field corrupt recordings of EEG and EPs. This paper introduces a method for motion artifact cancellation. This method is based on adaptive filtering and takes advantage of piezoelectric motion sensor information to estimate the motion artifact noise. This filter estimates the mapping between motion sensor and EEG space, subtracting the motion-related noise from the raw EEG signal. Due to possible subject motion and changes in electrode impedance, a time-varying mapping of the motion versus EEG is required. We show that this filter is capable of removing both ballistocardiogram and gross motion artifacts, restoring EEG alpha waves (8-13 Hz), and visual evoked potentials (VEPs). This adaptive filter outperforms the simple band-pass filter for alpha detection because it is also capable of reducing noise within the frequency band of interest. In addition, this filter also removes the transient responses normally visible in the EEG window after echo planar image acquisition, observed during interleaved EEG/fMRI recordings. Our adaptive filter approach can be implemented in real-time to allow for continuous monitoring of EEG and fMRI during clinical and cognitive studies.


NeuroImage | 2001

Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings.

Giorgio Bonmassar; Denis Schwartz; Arthur K. Liu; Kenneth K. Kwong; A.M. Dale; J.W. Belliveau

Combined analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has the potential to provide higher spatiotemporal resolution than either method alone. In some situations, in which the activity of interest cannot be reliably reproduced (e.g., epilepsy, learning, sleep states), accurate combined analysis requires simultaneous acquisition of EEG and fMRI. Simultaneous measurements ensure that the EEG and fMRI recordings reflect the exact same brain activity state. We took advantage of the spatial filtering properties of the bipolar montage to allow recording of very short (125--250 ms) visual-evoked potentials (VEPs) during fMRI. These EEG and fMRI measurements are of sufficient quality to allow source localization of the cortical generators. In addition, our source localization approach provides a combined EEG/fMRI analysis that does not require any manual selection of fMRI activations or placement of source dipoles. The source of the VEP was found to be located in the occipital cortex. Separate analysis of EEG and fMRI data demonstrated good spatial overlap of the observed activated sites. As expected, the combined EEG/fMRI analysis provided better spatiotemporal resolution than either approach alone. The resulting spatiotemporal movie allows for the millisecond-to-millisecond display of changes in cortical activity caused by visual stimulation. These data reveal two peaks in activity corresponding to the N75 and the P100 components. This type of simultaneous acquisition and analysis allows for the accurate characterization of the location and timing of neurophysiological activity in the human brain.


Neuroreport | 1999

Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI

Giorgio Bonmassar; Anami K; John R. Ives; J.W. Belliveau

We present the first simultaneous measurements of evoked potentials (EPs) and fMRI hemodynamic responses to visual stimulation. Visual evoked potentials (VEPs) were recorded both inside and outside the static 3T magnetic field, and during fMRI examination. We designed, constructed, and tested a non-magnetic 64-channel EEG recording cap. By using a large number of EEG channels it is possible to design a spatial filter capable of removing the artifact noise present when recording EEG/EPs within a strong magnetic field. We show that the designed spatial filter is capable of recovering the ballistocardiogram-contaminated original EEG signal. Isopotential plots of the electrode array recordings at the peak of the VEP response (approximately 100ms) correspond well with simultaneous fMRI observed activated areas of primary and secondary visual cortices.


Current Biology | 2009

Location-Specific Cortical Activation Changes during Sleep after Training for Perceptual Learning

Yuko Yotsumoto; Yuka Sasaki; Patrick Chan; Christos Vasios; Giorgio Bonmassar; Nozomi Ito; José E. Náñez; Shinsuke Shimojo; Takeo Watanabe

Visual perceptual learning is defined as performance enhancement on a sensory task and is distinguished from other types of learning and memory in that it is highly specific for location of the trained stimulus. The location specificity has been shown to be paralleled by enhancement in functional magnetic resonance imaging (fMRI) signal in the trained region of V1 after visual training. Although recently the role of sleep in strengthening visual perceptual learning has attracted much attention, its underlying neural mechanism has yet to be clarified. Here, for the first time, fMRI measurement of human V1 activation was conducted concurrently with a polysomnogram during sleep with and without preceding training for visual perceptual learning. As a result of predetermined region-of-interest analysis of V1, activation enhancement during non-rapid-eye-movement sleep after training was observed specifically in the trained region of V1. Furthermore, improvement of task performance measured subsequently to the post-training sleep session was significantly correlated with the amount of the trained-region-specific fMRI activation in V1 during sleep. These results suggest that as far as V1 is concerned, only the trained region is involved in improving task performance after sleep.


Annals of Neurology | 2004

Basal ganglia activity remains elevated after movement in focal hand dystonia.

Anne J. Blood; Alice W. Flaherty; Ji-Kyung Choi; Fred H. Hochberg; Douglas N. Greve; Giorgio Bonmassar; Bruce R. Rosen; Bruce G. Jenkins

Although previous studies of focal hand dystonia have detected cortical sensorimotor abnormalities, little is known about the role of the basal ganglia in this disorder. We report here that when focal hand dystonic patients performed finger‐tapping tasks, functional magnetic resonance imaging showed persisting elevations of basal ganglia activity after the tasks ended. We posit that inhibitory control of the basal ganglia may be faulty in focal hand dystonia, and that the increases we observe in “resting” activity may mask basal ganglia abnormalities in standard imaging contrast analyses.


NeuroImage | 2008

Coupling between somatosensory evoked potentials and hemodynamic response in the rat

Maria Angela Franceschini; Ilkka Nissilä; Weicheng Wu; Solomon G. Diamond; Giorgio Bonmassar; David A. Boas

We studied the relationship between somatosensory evoked potentials (SEP) recorded with scalp electroencephalography (EEG) and hemoglobin responses recorded non-invasively with diffuse optical imaging (DOI) during parametrically varied electrical forepaw stimulation in rats. Using these macroscopic techniques we verified that the hemodynamic response is not linearly coupled to the somatosensory evoked potentials, and that a power or threshold law best describes the coupling between SEP and the hemoglobin response, in agreement with the results of most invasive studies. We decompose the SEP response in three components (P1, N1, and P2) to determine which best predicts the hemoglobin response. We found that N1 and P2 predict the hemoglobin response significantly better than P1 and the input stimuli (S). Previous electrophysiology studies reported in the literature show that P1 originates in layer IV directly from thalamocortical afferents, while N1 and P2 originate in layers I and II and reflect the majority of local cortico-cortical interactions. Our results suggest that the evoked hemoglobin response is driven by the cortical synaptic activity and not by direct thalamic input. The N1 and P2 components, and not P1, need to be considered to correctly interpret neurovascular coupling.


Human Brain Mapping | 2001

Influence of EEG electrodes on the BOLD fMRI signal

Giorgio Bonmassar; Nouchine Hadjikhani; John R. Ives; Denise P. Hinton; John W. Belliveau

Measurement of the EEG during fMRI scanning can give rise to image distortions due to magnetic susceptibility, eddy currents or chemical shift artifacts caused by certain types of EEG electrodes, cream, leads, or amplifiers. Two different creams were tested using MRS and T2* measurements, and we found that the one with higher water content was superior. This study introduces an index that quantifies the influence of EEG equipment on the BOLD fMRI signal. This index can also be used more generally to measure the changes in the fMRI signal due to the presence of any type of device inside (or outside) of the field of view (e.g., with fMRI and diffuse optical tomography, infrared imaging, transcranial magnetic stimulation, ultrasound imaging, etc.). Quantitative noise measurements are hampered by the normal variability of functional activation within the same subject and by the different slice profiles obtained when inserting a subject multiple times inside a MR imaging system. Our measurements account for these problems by using a matched filtering of cortical surface maps of functional activations. The results demonstrate that the BOLD signal is not influenced by the presence of EEG electrodes when using a properly constructed MRI compatible recording cap. Hum. Brain Mapping 14:108–115, 2001.


Nature Communications | 2012

Microscopic Magnetic Stimulation of Neural Tissue

Giorgio Bonmassar; Seung-Woo Lee; Daniel K. Freeman; Miloslav Polasek; Shelley I. Fried; John T. Gale

Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices.

Collaboration


Dive into the Giorgio Bonmassar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo M. Angelone

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

Sunao Iwaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Ida Iacono

Center for Devices and Radiological Health

View shared research outputs
Top Co-Authors

Avatar

John R. Ives

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge