Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Buonanno is active.

Publication


Featured researches published by Giorgio Buonanno.


Indoor Air | 2013

Indoor aerosols: from personal exposure to risk assessment

Lidia Morawska; Alireza Afshari; G.N. Bae; Giorgio Buonanno; Christopher Yu Hang Chao; Otto Hänninen; Werner Hofmann; Christina Isaxon; E.R. Jayaratne; Pertti Pasanen; Tunga Salthammer; Michael S. Waring; Aneta Wierzbicka

Motivated by growing considerations of the scale, severity, and risks associated with human exposure to indoor particulate matter, this work reviewed existing literature to: (i) identify state-of-the-art experimental techniques used for personal exposure assessment; (ii) compare exposure levels reported for domestic/school settings in different countries (excluding exposure to environmental tobacco smoke and particulate matter from biomass cooking in developing countries); (iii) assess the contribution of outdoor background vs indoor sources to personal exposure; and (iv) examine scientific understanding of the risks posed by personal exposure to indoor aerosols. Limited studies assessing integrated daily residential exposure to just one particle size fraction, ultrafine particles, show that the contribution of indoor sources ranged from 19% to 76%. This indicates a strong dependence on resident activities, source events and site specificity, and highlights the importance of indoor sources for total personal exposure. Further, it was assessed that 10-30% of the total burden of disease from particulate matter exposure was due to indoor-generated particles, signifying that indoor environments are likely to be a dominant environmental factor affecting human health. However, due to challenges associated with conducting epidemiological assessments, the role of indoor-generated particles has not been fully acknowledged, and improved exposure/risk assessment methods are still needed, together with a serious focus on exposure control.


Science of The Total Environment | 2014

Personal exposure to ultrafine particles: The influence of time-activity patterns

Giorgio Buonanno; Luca Stabile; Lidia Morawska

Exposure to ultrafine particles (UFPs) is deemed to be a major risk affecting human health. Therefore, airborne particle studies were performed in the recent years to evaluate the most critical micro-environments, as well as identifying the main UFP sources. Nonetheless, in order to properly evaluate the UFP exposure, personal monitoring is required as the only way to relate particle exposure levels to the activities performed and micro-environments visited. To this purpose, in the present work, the results of experimental analysis aimed at showing the effect of the time-activity patterns on UFP personal exposure are reported. In particular, 24 non-smoking couples (12 during winter and summer time, respectively), comprised of a man who worked full-time and a woman who was a homemaker, were analyzed using personal particle counter and GPS monitors. Each couple was investigated for a 48-h period, during which they also filled out a diary reporting the daily activities performed. Time activity patterns, particle number concentration exposure and the related dose received by the participants, in terms of particle alveolar-deposited surface area, were measured. The average exposure to particle number concentration was higher for women during both summer and winter (Summer: women 1.8 × 10(4) part. cm(-3); men 9.2 × 10(3) part. cm(-3); Winter: women 2.9 × 10(4) part. cm(-3); men 1.3 × 10(4) part. cm(-3)), which was likely due to the time spent undertaking cooking activities. Staying indoors after cooking also led to higher alveolar-deposited surface area dose for both women and men during the winter time (9.12 × 10(2) and 6.33 × 10(2) mm(2), respectively), when indoor ventilation was greatly reduced. The effect of cooking activities was also detected in terms of womens dose intensity (dose per unit time), being 8.6 and 6.6 in winter and summer, respectively. On the contrary, the highest dose intensity activity for men was time spent using transportation (2.8 in both winter and summer).


Environmental Pollution | 2012

A comparison of submicrometer particle dose between Australian and Italian people.

Giorgio Buonanno; Lidia Morawska; Luca Stabile; Lei Wang; G. Giovinco

Alveolar and tracheobronchial-deposited submicrometer particle number and surface area data received by different age groups in Australia are shown. Activity patterns were combined with microenvironmental data through a Monte Carlo method. Particle number distributions for the most significant microenvironments were obtained from our measurement survey data and people activity pattern data from the Australian Human Activity Pattern Survey were used. Daily alveolar particle number (surface area) dose received by all age groups was equal to 3.0 × 10(10) particles (4.5 × 10(2) mm(2)), varying slightly between males and females. In contrast to gender, the lifestyle was found to significantly affect the daily dose, with highest depositions characterizing adults. The main contribution was due to indoor microenvironments. Finally a comparison between Italian and Australian people in terms of received particle dose was reported; it shows that different cooking styles can affect dose levels: higher doses were received by Italians, mainly due to their particular cooking activity.


Science of The Total Environment | 2012

Individual dose and exposure of Italian children to ultrafine particles.

Giorgio Buonanno; Sara Marini; Lidia Morawska; Fernanda Fuoco

Time-activity patterns and the airborne pollutant concentrations encountered by children each day are an important determinant of individual exposure to airborne particles. This is demonstrated in this work by using hand-held devices to measure the real-time individual exposure of more than 100 children aged 8-11 years to particle number concentrations and average particle diameter, as well as alveolar and tracheobronchial deposited surface area concentration. A GPS-logger and activity diaries were also used to give explanation to the measurement results. Children were divided in three sample groups: two groups comprised of urban schools (school time from 8:30 am to 1:30 pm) with lunch and dinner at home, and the third group of a rural school with only dinner at home. The mean individual exposure to particle number concentration was found to differ between the three groups, ranging from 6.2 × 10(4)part.cm(-3) for children attending one urban school to 1.6 × 10(4)part.cm(-3) for the rural school. The corresponding daily alveolar deposited surface area dose varied from about 1.7 × 10(3)mm(2) for urban schools to 6.0 × 10(2)mm(2) for the rural school. For all of the children monitored, the lowest particle number concentrations are found during sleeping time and the highest were found during eating time. With regard to alveolar deposited surface area dose, a childs home was the major contributor (about 70%), with school contributing about 17% for urban schools and 27% for the rural school. An important contribution arises from the cooking/eating time spent at home, which accounted for approximately 20% of overall exposure, corresponding to more than 200 mm(2). These activities represent the highest dose received per time unit, with very high values also encountered by children with a fireplace at home, as well as those that spend considerable time stuck in traffic jams.


Environmental Science & Technology | 2014

School children's personal exposure to ultrafine particles in the urban environment.

Mandana Mazaheri; Sam Clifford; Rohan Jayaratne; Megat Mokhtar; Fernanda Fuoco; Giorgio Buonanno; Lidia Morawska

There has been considerable scientific interest in personal exposure to ultrafine particles (UFP). In this study, the inhaled particle surface area doses and dose relative intensities in the tracheobronchial and alveolar regions of lungs were calculated using measured 24-h UFP time series of school children personal exposures. Bayesian hierarchical modeling was used to determine mean doses and dose intensities for the various microenvironments. Analysis of measured personal exposures for 137 participating children from 25 schools in the Brisbane Metropolitan Area showed similar trends for all participating children. Bayesian regression modeling was performed to calculate the daily proportion of childrens total doses in different microenvironments. The proportion of total daily alveolar doses for home, school, commuting, and other were 55.3%, 35.3%, 4.5%, and 5.0%, respectively, with the home microenvironment contributing a majority of childrens total daily dose. Childrens mean indoor dose was never higher than the outdoors at any of the schools, indicating there were no persistent indoor particle sources in the classrooms during the measurements. Outdoor activities, eating/cooking at home, and commuting were the three activities with the highest dose intensities. Childrens exposure during school hours was more strongly influenced by urban background particles than traffic near the school.


Waste Management | 2011

Chemical, dimensional and morphological ultrafine particle characterization from a Waste-to-Energy plant

Giorgio Buonanno; Luca Stabile; Pasquale Avino; Elena Belluso

Waste combustion processes are responsible of particles and gaseous emissions. Referring to the particle emission, in the last years specific attention was paid to ultrafine particles (UFPs, diameter less than 0.1 μm), mainly emitted by combustion processes. In fact, recent findings of toxicological and epidemiological studies indicate that fine and ultrafine particles could represent a risk for health and environment. Therefore, it is necessary to quantify particle emissions from incinerators also to perform an exposure assessment for the human populations living in their surrounding areas. To these purposes, in the present work an experimental campaign aimed to monitor UFPs was carried out at the incineration plant in San Vittore del Lazio (Italy). Particle size distributions and total concentrations were measured both at the stack and before the fabric filter inlet in order to evaluate the removal efficiency of the filter in terms of UFPs. A chemical characterization of UFPs in terms of heavy metal concentration was performed through a nuclear method, i.e., Instrumental Neutron Activation Analysis (INAA), as well as a mineralogical investigation was carried out through a Transmission Electron Microscope (TEM) equipped with an Energy Dispersive Spectrometer (EDS) in order to evaluate shape, crystalline state and mineral compound of sampled particles. Maximum values of 2.7 × 10(7) part. cm(-3) and 2.0 × 10(3) part. cm(-3) were found, respectively, for number concentration before and after the fabric filter showing a very high efficiency in particle removing by the fabric filter. With regard to heavy metal concentrations, the elements with higher boiling temperature present higher concentrations at lower diameters showing a not complete evaporation in the combustion section and the consequent condensation of semi-volatile compounds on solid nuclei. In terms of mineralogical and morphological analysis, the most abundant compounds found in samples collected before the fabric filter are Na-K-Pb oxides followed by phyllosilicates, otherwise, different oxides of comparable abundance were detected in the samples collected at the stack.


Aerosol Science and Technology | 2011

Volatility Characterization of Cooking-Generated Aerosol Particles

Giorgio Buonanno; Graham R. Johnson; Lidia Morawska; Luca Stabile

Cooking-generated aerosol characterization is crucial for providing an accurate evaluation of human exposure to particle concentrations. In addition, when evaluating the dimensional properties of aerosols emitted from cooking activities, one key aspect to be investigated is the composition of the particles emitted. To this end, an evaluation of the volatility of cooking-generated aerosol particles was performed in this study. Total concentration and size distribution measurements were carried out using a thermal conditioning device, along with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS), in order to evaluate the amount of volatile material emitted by different cooking activities (frying and grilling), as well as those involving different kinds of food (fatty and vegetable foods). The results showed a shift in the dominant size distribution mode toward smaller diameters with higher aerosol conditioning temperatures. The corresponding total number concentrations were roughly constant when fatty foods were cooked, but a significant reduction in total particle concentration was observed when vegetable foods were fried or grilled. These results seem to demonstrate the presence of a nonvolatile core when cooking fatty foods. The larger volatile fraction associated with vegetable food cooking is also demonstrated by comparing the nonvolatile surface area and volatile mass distributions for each cooking activity, in order to evaluate the particles chemical and physical effects on human being.


Waste Management | 2009

Size distribution and number concentration of particles at the stack of a municipal waste incinerator.

Giorgio Buonanno; Giorgio Ficco; Luca Stabile

A large number of particles and gaseous products are generated by waste combustion processes. Of particular importance are the ultrafine particles (less than 0.1 microm in aerodynamic diameter) that are emitted in large quantities from all the combustion sources. Recent findings of toxicological and epidemiological studies indicate that fine and ultrafine particles could represent health and environmental risks. Quantifying particulate emissions from combustion sources is important: (i) to examine the source status in compliance with regulations; (ii) to create inventories of such emissions at local, regional and national levels, for developing appropriate management and control strategies in relation to air quality; (iii) to predict ambient air quality in the areas involved at the source and (iv) to perform source apportionment and exposure assessment for the human populations and/or ecological systems involved. In order to control and mitigate the particles in the view of health and environmental risk reduction, a good understanding of the relative and absolute contribution from the emission sources to the airborne concentrations is necessary. For these purposes, the concentration and size distribution of particles in terms of mass and number in a waste gas of a municipal waste incineration plant were measured in the stack gas. The mass concentrations obtained are well below the imposed daily threshold value for both incineration lines and the mass size distribution is on average very stable. The total number concentrations are between 1 x 10(5) and 2 x 10(5)particles/cm(3) and are on average relatively stable from one test to another. The measured values and the comparison with other point sources show a very low total number concentration of particles at the stack gas, revealing the importance of the flue gas treatment also for ultrafine particles. Also in respect to linear sources (high and light duty vehicles), the comparison shows a negligible emission in terms of the total number of particles.


Waste Management | 2010

Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant

Giorgio Buonanno; Luca Stabile; Pasquale Avino; R. Vanoli

In the last years numerous epidemiological studies were carried out to evaluate the effects of particulate matter on human health. In industrialized areas, anthropogenic activities highly contribute to the fine and ultrafine particle concentrations. Then, it is important to characterize the evolution of particle size distribution and chemical composition near these emission points. Waste incineration represents a favorable technique for reducing the waste volume. However, in the past, municipal waste incinerators (MWIs) had a bad reputation due to the emission of toxic combustion byproducts. Consequently, the risk perception of the people living near MWIs is very high even if in Western countries waste incineration has nowadays to be considered a relatively clean process from a technical point of view. The study here presented has an exemplary meaning for developing appropriate management and control strategies for air quality in the surrounding of MWIs and to perform exposure assessment for populations involved. Environment particles were continuously measured through a SMPS/APS system over 12 months. The monitoring site represents a downwind receptor of a typical MWI. Furthermore, elements and organic fractions were measured by means of the Instrumental Neutron Activation Analysis and using dichotomous and high volume samplers. Annual mean values of 8.6 x 10(3)+/-3.7 x 10(2)part.cm(-3) and 31.1+/-9.0 microg m(-3) were found for number and mass concentration, typical of a rural site. Most of the elements can be attributed to long-range transport from other natural and/or anthropogenic sources. Finally, the Polycyclic Aromatic Hydrocarbons present low concentrations with a mean value of 24.6 ng m(-3).


Environment International | 2016

Children's well-being at schools: Impact of climatic conditions and air pollution

Tunga Salthammer; Erik Uhde; Tobias Schripp; Alexandra Schieweck; Lidia Morawska; Mandana Mazaheri; Sam Clifford; Congrong He; Giorgio Buonanno; Xavier Querol; Mar Viana; Prashant Kumar

Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes the problems are simply ignored. This review summarizes the current results and knowledge gained from the scientific literature on air quality in classrooms. Possible scenarios for the future are discussed and guideline values proposed which can serve to help authorities, government organizations and commissions improve the situation on a global level.

Collaboration


Dive into the Giorgio Buonanno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lidia Morawska

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mandana Mazaheri

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge