Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Cozza is active.

Publication


Featured researches published by Giorgio Cozza.


Biochemical Journal | 2008

The selectivity of inhibitors of protein kinase CK2. An update.

Mario A. Pagano; Jenny Bain; Zygmunt Kazimierczuk; Stefania Sarno; Maria Ruzzene; Giovanni Di Maira; Matthew Elliott; Andrzej Orzeszko; Giorgio Cozza; Flavio Meggio; Lorenzo A. Pinna

CK2 (casein kinase 2) is a very pleiotropic serine/threonine protein kinase whose abnormally high constitutive activity has often been correlated to pathological conditions with special reference to neoplasia. The two most widely used cell permeable CK2 inhibitors, TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole), are marketed as quite specific CK2 blockers. In the present study we show, by using a panel of approx. 80 protein kinases, that DMAT and its parent compound TBI (or TBBz; 4,5,6,7-tetrabromo-1H-benzimidazole) are potent inhibitors of several other kinases, with special reference to PIM (provirus integration site for Moloney murine leukaemia virus)1, PIM2, PIM3, PKD1 (protein kinase D1), HIPK2 (homeodomain-interacting protein kinase 2) and DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase 1a). In contrast, TBB is significantly more selective toward CK2, although it also inhibits PIM1 and PIM3. In an attempt to improve selectivity towards CK2 a library of 68 TBB/TBI-related compounds have been tested for their ability to discriminate between CK2, PIM1, HIPK2 and DYRK1a, ending up with seven compounds whose efficacy toward CK2 is markedly higher than that toward the second most inhibited kinase. Two of these, K64 (3,4,5,6,7-pentabromo-1H-indazole) and K66 (1-carboxymethyl-2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole), display an overall selectivity much higher than TBB and DMAT when tested on a panel of 80 kinases and display similar efficacy as inducers of apoptosis.


Current Topics in Medicinal Chemistry | 2008

Medicinal Chemistry and the Molecular Operating Environment (MOE): Application of QSAR and Molecular Docking to Drug Discovery

Santiago Vilar; Giorgio Cozza; Stefano Moro

The search for new compounds with a given biological activity requires enormous effort in terms of manpower and cost. This effort arises from the large number of compounds that need to be synthesized and subsequently biologically evaluated. For this reason the pharmaceutical industry has shown great interest in theoretical methods that enable the rational design of pharmaceutical agents. In the last years bioinformatics has experienced a great evolution due to the development of specialized software and to the increasing computer power. The codification of the structural information of molecules through molecular descriptors and the subsequent data analysis allow establishing QSAR models (Quantitative Structure-Activity Relationship) that can be applied to the design and the virtual screening of new drugs. The development of sophisticated Docking methodologies also allows a more accurate predict of the biological activity of molecules. Moreover, through this type of computational techniques and theoretical approaches, it is possible to develop explanatory hypothesis on the mechanism of action of drugs. This work provides a brief description of a series of studies implemented in the software MOE (Molecular Operating Environment) with particular attention to the medicinal chemistry aspects.


Antioxidants & Redox Signaling | 2011

A Comparison of Thiol Peroxidase Mechanisms

Leopold Flohé; Stefano Toppo; Giorgio Cozza; Fulvio Ursini

Thiol peroxidases comprise glutathione peroxidases (GPx) and peroxiredoxins (Prx). The enzymes of both families reduce hydroperoxides with thiols by enzyme-substitution mechanisms. H(2)O(2) and organic hydroperoxides are reduced by all thiol peroxidases, most efficiently by SecGPxs, whereas fast peroxynitrite reduction is more common in Prxs. Reduction of lipid hydroperoxides is the domain of monomeric GPx4-type enzymes and of some Prxs. The catalysis starts with oxidation of an active-site selenocysteine (U(P)) or cysteine (C(P)). Activation of Cys (Sec) for hydroperoxide reduction in the GPx family is achieved by a typical tetrad composed of Cys (Sec), Asn, Gln, and Trp, whereas a triad of Cys Thr (or Ser) and Arg is the signature of Prx. In many of the CysGPxs and Prxs, a second Cys (C(R)) is required. In these 2-CysGPxs and 2-CysPrxs, the C(P) oxidized to a sulfenic acid forms an intra- or intermolecular disulfide (typical 2-CysPrx) with C(R), before a stepwise regeneration of ground-state enzyme by redoxin-type proteins can proceed. In SecGPxs and sporadically in Prxs, GSH is used as the reductant. Diversity combined with structural variability predestines thiol peroxidases for redox regulation via ROOH sensing and direct or indirect transduction of oxidant signals to specific protein targets.


ChemBioChem | 2007

Tetrabromocinnamic Acid (TBCA) and Related Compounds Represent a New Class of Specific Protein Kinase CK2 Inhibitors

Mario A. Pagano; Giorgia Poletto; Giovanni Di Maira; Giorgio Cozza; Maria Ruzzene; Stefania Sarno; Jenny Bain; Matthew Elliott; Stefano Moro; Giuseppe Zagotto; Flavio Meggio; Lorenzo A. Pinna

Abnormally high constitutive activity of protein kinase CK2, levels of which are elevated in a variety of tumours, is suspected to underlie its pathogenic potential. The most widely employed CK2 inhibitor is 4,5,6,7‐tetrabromobenzotriazole (TBB), which exhibits a comparable efficacy toward another kinase, DYRK1 a. Here we describe the development of a new class of CK2 inhibitors, conceptually derived from TBB, which have lost their potency toward DYRK1 a. In particular, tetrabromocinnamic acid (TBCA) inhibits CK2 five times more efficiently than TBB (IC50 values 0.11 and 0.56 μM, respectively), without having any comparable effect on DYRK1 a (IC50 24.5 μM) or on a panel of 28 protein kinases. The usefulness of TBCA for cellular studies has been validated by showing that it reduces the viability of Jurkat cells more efficiently than TBB through enhancement of apoptosis. Collectively taken, the reported data support the view that suitably derivatized tetrabromobenzene molecules may provide powerful reagents for dissecting the cellular functions of CK2 and counteracting its pathogenic potentials.


Biochemical Journal | 2009

Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2

Giorgio Cozza; Marco Mazzorana; Elena Papinutto; Jenny Bain; Matthew Elliott; Giovanni Di Maira; Alessandra Gianoncelli; Mario A. Pagano; Stefania Sarno; Maria Ruzzene; Roberto Battistutta; Flavio Meggio; Stefano Moro; Giuseppe Zagotto; Lorenzo A. Pinna

Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a moderately potent and poorly selective inhibitor of protein kinase CK2, one of the most pleiotropic serine/threonine protein kinases, implicated in neoplasia and in other global diseases. By virtual screening of the MMS (Molecular Modeling Section) database, we have now identified quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) as an inhibitor of CK2 that is more potent and selective than emodin. CK2 inhibition by quinalizarin is competitive with respect to ATP, with a Ki value of approx. 50 nM. Tested at 1 microM concentration on a panel of 75 protein kinases, quinalizarin drastically inhibits only CK2, with a promiscuity score (11.1), which is the lowest ever reported so far for a CK2 inhibitor. Especially remarkable is the ability of quinalizarin to discriminate between CK2 and a number of kinases, notably DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase), PIM (provirus integration site for Moloney murine leukaemia virus) 1, 2 and 3, HIPK2 (homeodomain-interacting protein kinase-2), MNK1 [MAPK (mitogen-activated protein kinase)-interacting kinase 1], ERK8 (extracellular-signal-regulated kinase 8) and PKD1 (protein kinase D 1), which conversely tend to be inhibited as drastically as CK2 by commercially available CK2 inhibitors. The determination of the crystal structure of a complex between quinalizarin and CK2alpha subunit highlights the relevance of polar interactions in stabilizing the binding, an unusual characteristic for a CK2 inhibitor, and disclose other structural features which may account for the narrow selectivity of this compound. Tested on Jurkat cells, quinalizarin proved able to inhibit endogenous CK2 and to induce apoptosis more efficiently than the commonly used CK2 inhibitors TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole).


Journal of Medicinal Chemistry | 2008

Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure-activity relationships.

Adriana Chilin; Roberto Battistutta; Andrea Bortolato; Giorgio Cozza; Samuele Zanatta; Giorgia Poletto; Marco Mazzorana; Giuseppe Zagotto; Eugenio Uriarte; Adriano Guiotto; Lorenzo A. Pinna; Flavio Meggio; Stefano Moro

Casein kinase 2 (CK2) is an ubiquitous, essential, and highly pleiotropic protein kinase whose abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other diseases. Recently, using different virtual screening approaches, we have identified several novel CK2 inhibitors. In particular, we have discovered that coumarin moiety can be considered an attractive CK2 inhibitor scaffold. In the present work, we have synthetized and tested a small library of coumarins (more than 60), rationalizing the observed structure-activity relationship. Moreover, the most promising inhibitor, 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC), has been also crystallized in complex with CK2, and the experimental binding mode has been used to derive a linear interaction energy (LIE) model.


Biochemistry | 2011

Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer.

Roberto Battistutta; Giorgio Cozza; F Pierre; Elena Papinutto; Graziano Lolli; Stefania Sarno; S.E O'Brien; A Siddiqui-Jain; M Haddach; K Anderes; D.M Ryckman; Flavio Meggio; Lorenzo A. Pinna

5-(3-Chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer, is representative of a new class of CK2 inhibitors with K(i) values in the low nanomolar range and unprecedented selectivity versus other kinases. Here we present the crystal structure of the complexes of CX-4945 and two analogues (CX-5011 and CX-5279) with the catalytic subunit of human CK2. Consistent with their ATP-competitive mode of inhibition, all three compounds bind in the active site of CK2 (type I inhibitors). The tricyclic scaffold of the inhibitors superposes on the adenine of ATP, establishing multiple hydrophobic interactions with the binding cavity. The more extended scaffold, as compared to that of ATP, allows the carboxylic function, shared by all three ligands, to penetrate into the deepest part of the active site where it makes interactions with conserved water W1 and Lys-68, thus accounting for the crucial role of this negatively charged group in conferring high potency to this class of inhibitors. The presence of a pyrimidine in CX-5011 and in CX-5279 instead of a pyridine (as in CX-4945) ring is likely to account for the higher specificity of these compounds whose Gini coefficients, calculated by profiling them against panels of 102 and/or 235 kinases, are significantly higher than that of CX-4945 (0.735 and 0.755, respectively, vs 0.615), marking the highest selectivity ever reported for CK2 inhibitors.


Medicinal Research Reviews | 2010

How druggable is protein kinase CK2

Giorgio Cozza; Andrea Bortolato; Stefano Moro

CK2 is a pleiotropic, ubiquitous, and constitutively active protein kinase (PK), with both cytosolic and nuclear localization in most mammalian cells. The holoenzyme is generally composed of two catalytic (α and/or α′) and two regulatory (β) subunits, but the free α/α′ subunits are catalytically active by themselves and can be present in cells under some circumstances. CK2 catalyzes the phosphorylation of more than 300 substrates characterized by multiple acidic residues surrounding the phosphor‐acceptor amino acid, and, consequently, it plays a key role in several physiological and pathological processes. But how can one kinase orchestrate all these tasks faithfully? How is it possible that one kinase can, despite all pleiotropic characteristics of PKs in general, be involved in so many different biochemical events? Is CK2 a druggable target? Several questions are still to be clearly answered, and this review is an occasion for a fruitful discussion.  © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 3, 419–462, 2010


Current Medicinal Chemistry | 2013

Kinase CK2 Inhibition: An Update

Giorgio Cozza; Lorenzo A. Pinna; Stefano Moro

Protein kinase CK2 (Casein Kinase 2) is an essential, ubiquitous and highly pleiotropic protein kinase, implicated in several human diseases. In the last decade, several inhibitors of CK2, have been discovered and characterized to be ATP-competitive compounds. However, only one of them, CX-4945, has recently completed Phase I clinical trial as potential anticancer drug. In this review, we report all chemical classes of CK2 inhibitors available in literature, focusing our attention on conventional ATP-competitive and on non ATP-competitive inhibitors, which could represent a new frontier in CK2 inhibition and, consequently, a promising field of study in discovering new drug candidates.


Bioorganic & Medicinal Chemistry | 2009

Tetraiodobenzimidazoles are potent inhibitors of protein kinase CK2.

Alessandra Gianoncelli; Giorgio Cozza; Andrzej Orzeszko; Flavio Meggio; Zygmunt Kazimierczuk; Lorenzo A. Pinna

A series of novel iodinated benzimidazoles have been prepared by iodination of respective benzimidazole with iodine and periodic acid in sulfuric acid solution. Additionally several 2-substituted- and N-1-carboxymethyl-substituted derivatives of 4,5,6,7-tetraiodobenzimidazole (TIBI) were obtained. For sake of comparison, some new 4,5,6,7-tetrabromobenzimidazoles were also synthesized. The ability of the new compounds to inhibit protein kinase CK2 has been evaluated. The results show that 4,5,6,7-tetraiodobenzimidazoles are more powerful inhibitors of CK2 than their tetrabrominated analogs. Molecular modeling supports the experimental data showing that tetraiodobenzimidazole moiety fills better the binding pocket than respective tetrabromo and tetrachlorocompounds. To note that 4,5,6,7-tetraiodobenzimidazole (TIBI) is one of the most efficient CK2 inhibitors (K(i)=23 nM) described to date.

Collaboration


Dive into the Giorgio Cozza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge