Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Felzani is active.

Publication


Featured researches published by Giorgio Felzani.


Free Radical Biology and Medicine | 1999

Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle

Orietta Pansarasa; Laura Bertorelli; Jacopo Vecchiet; Giorgio Felzani; Fulvio Marzatico

This study was conducted in order to provide evidence for the role of reactive oxygen species (ROS) in human skeletal muscle aging. We used human muscle samples obtained from hospitalized patients in an open study with matched pairs of individuals of different ages. The subjects, ranging in age from 17 to 91 years, were grouped as follows: 17-25-, 26-35-, 36-45-, 46-55-, 56-65-, 66-75-, 76-85-, and 86-91-year-old groups. To investigate the relationship between muscle aging and oxidative damage we measured total and Mn-dependent superoxide dismutase (total SOD, MnSOD), glutathione peroxidase (GSHPx), and catalase (CAT) activities; total reduced and oxidized glutathione (GSHtot, GSH, and GSSG) levels; lipid peroxidation (LPO), and protein carbonyl content (PrC). Total SOD activity decreases significantly with age in the 66-75-year-old group, although MnSOD activity increases significantly in the 76-85-year-old group. The activity of the two H2O2 detoxifying enzymes (GSHPx and CAT) did not change with age, as do GSHtot and GSH levels. GSSG levels increased significantly (76-85- and 86-91-year-old groups) with age. We observed a significant increase in LPO levels (66-75- and 76-85-year-old groups), although the PrC content shows a trend of increase without gaining the statistical significance. These results support the idea that ROS play an important role in the human muscle aging process.


Free Radical Biology and Medicine | 2001

Age-related mitochondrial genotypic and phenotypic alterations in human skeletal muscle.

Vito Pesce; Antonella Cormio; Flavio Fracasso; Jacopo Vecchiet; Giorgio Felzani; Angela Maria Serena Lezza; Palmiro Cantatore; Maria Nicola Gadaleta

To have a clearer picture of how mitochondrial damages are associated to aging, a comprehensive study of phenotypic and genotypic alterations was carried out, analyzing with histochemical and molecular biology techniques the same skeletal muscle specimens of a large number of healthy subjects from 13 to 92 years old. Histochemical data showed that ragged red fibers (RRF) appear at about 40 years of age and are mostly cytochrome c oxidase (COX)-positive, whereas they are almost all COX-negative thereafter. Molecular analyses showed that the 4977 bp deletion of mitochondrial DNA (mtDNA(4977)) and the 7436 bp deletion of mtDNA (mtDNA(7436)) are already present in individuals younger than 40 years of age, but their occurrence does not change with age. After 40 years of age the number of mtDNA deleted species, as revealed by Long Extension PCR (LX-PCR), increases, the 10422 bp deletion of mtDNA (mtDNA(10422)) appears, although with a very low frequency of occurrence, and mtDNA content is more than doubled. Furthermore, mtDNA(4977) level directly correlates with that of COX-negative fibers in the same analyzed subjects. These data clearly show that, after 40 years of age, the phenotypic and genotypic mitochondrial alterations here studied appear in human skeletal muscle and that they are closely related.


Journal of Muscle Research and Cell Motility | 2001

Age and sex influence on oxidative damage and functional status in human skeletal muscle

Giorgio Fanò; Patrizia Mecocci; Jacopo Vecchiet; Silvia Belia; Stefania Fulle; M. Cristina Polidori; Giorgio Felzani; Umberto Senin; Leonardo Vecchiet; M. Flint Beal

A reduction in muscle mass, with consequent decrease in strength and resistance, is commonly observed with advancing age. In this study we measured markers of oxidative damage to DNA, lipids and proteins, some antioxidant enzyme activities as well Ca2+ transport in sarcoplasmic reticulum membranes in muscle biopsies from vastus lateralis of young and elderly healthy subjects of both sexes in order to evaluate the presence of age- and sex- related differences. We found a significant increase in oxidation of DNA and lipids in the elderly group, more evident in males, and a reduction in catalase and glutathione transferase activities. The experiments on Ca2+ transport showed an abnormal functional response of aged muscle after exposure to caffeine, which increases the opening of Ca2+ channels, as well a reduced activity of the Ca2+ pump in elderly males. From these results we conclude that oxidative stress play an important role in muscle aging and that oxidative damage is much more evident in elderly males, suggesting a gender difference maybe related to hormonal factors.


Free Radical Research | 2000

Age and sex differences in human skeletal muscle: role of reactive oxygen species.

Orietta Pansarasa; Laura Castagna; B. Colombi; Jacopo Vecchiet; Giorgio Felzani; Fulvio Marzatico

Previous studies, conducted on experimental animals, have indicated that reactive oxygen species (ROS) are involved in the aging process. The objective of this work was to study the relationship between oxidative damage and human skeletal muscle aging, measuring the activity of the main antioxidant enzymes superoxide dismutase (total and MnSOD), glutathione peroxidase (GPx) and catalase in the skeletal muscle of men and women in the age groups: young (17–40 years), adult (41–65 years) and aged (66–91 years). We also measured glutathione and glutathione disulfide (GSH and GSSG) levels and the redox index; lipid peroxidation and protein carbonyl content. Total SOD activity was lower in the 66–91 year-old vs. the 17–40 year-old men; MnSOD activity was significantly greater in 66–91 year-old vs. 17–40 year-old women. GPx activity remained unchanged. The activity of catalase was lower in adults than in young men but higher in the aged. We observed no changes in GSH levels and significantly higher GSSG levels only in aged men vs. adult men, and a significant decrease in aged women vs. aged men. The protein carbonyl content increased significantly in the 41–65 and 66–91 year-old vs. the 17–40 year-old men. Finally, young women have lower lipid peroxidation levels than young men. Significantly higher lipid peroxidation levels were observed in aged men vs. both young and adult men, and the same trend was noticed for women. We conclude that oxidative damage may play a crucial role in the decline of functional activity in human skeletal muscle with normal aging in both sexes; and that men appear to be more subject to oxidative stress than women.


FEBS Letters | 2001

Increased expression of mitochondrial transcription factor A and nuclear respiratory factor-1 in skeletal muscle from aged human subjects.

Angela Maria Serena Lezza; Vito Pesce; Antonella Cormio; Flavio Fracasso; Jacopo Vecchiet; Giorgio Felzani; Palmiro Cantatore; Maria Nicola Gadaleta

The expression of two factors involved in the nuclear–mitochondrial crosstalk, namely the mitochondrial transcription factor A (TFAM) and the nuclear respiratory factor‐1 (NRF‐1), was studied in human skeletal muscle biopsies of young and aged subjects. Aged subjects presented a 2.6‐fold and an 11‐fold increase of the levels of TFAM protein and TFAM mRNA, respectively. The increased expression of TFAM was associated to the doubling of NRF‐1 DNA‐binding affinity and to a 6‐fold increase of NRF‐1 mRNA level. The upregulation of TFAM and NRF‐1, in aged skeletal muscle, appears involved in the pathway leading to the age‐related increase of mitochondrial DNA content.


Experimental Gerontology | 2005

Human muscle aging: ROS-mediated alterations in rectus abdominis and vastus lateralis muscles.

Barbara Marzani; Giorgio Felzani; Rosa Grazia Bellomo; Jacopo Vecchiet; Fulvio Marzatico

Aging is related to the accumulation of reactive oxygen species (ROS)-mediated oxidative damage. Considering the heterogeneity of age-related changes and the involvement of muscles in different functions, we compared the aging process in different functional muscles. We studied age-related changes in rectus abdominis (RA) and vastus lateralis (VL) in subjects of different age (18-48- and 66-90-year-old). We analysed fiber distribution, antioxidant enzymatic systems: Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), glutathione peroxidase (GSHPx), catalase (CAT), as well as oxidative damage markers: lipoperoxide levels (LPO), carbonylated proteins (CP), reduced and oxidized glutathione (GSH, GSSG) content and the GSH/GSSG ratio. In the muscles analysed, type I fiber increases during aging with a consequent decrease in type II distribution. In the elderly group RA MnSOD showed higher activity than VL. Furthermore, in RA MnSOD was higher in the elder group than in the younger group. CuZnSOD, as well as GSHPx and CAT activities remained unchanged. LPO levels in VL increase with age; moreover, in the elderly group VL showed higher value than RA. CP, GSH and GSSG remained unchanged, while GSH/GSSG decreases in RA during aging. In conclusion, a relationship between aging and ROS seems to exist, but oxidative processes could evolve in different ways in muscles with different functions.


Neurobiology of Aging | 2005

Mitochondrial DNA mutations in RRF of healthy subjects of different age.

Antonella Cormio; Francesco Milella; Jacopo Vecchiet; Giorgio Felzani; Maria Nicola Gadaleta; Palmiro Cantatore

To obtain information on the mechanisms responsible of the generation of ragged red fibers (RRF) during aging, we analyzed the mitochondrial genotype of single skeletal muscle fibers of healthy individuals having an age comprised between 45 and 92 years. The sequencing of the D-loop region showed many sequence changes with respect to the Cambridge reference sequence (CRS), in both RRF and normal fibers. These changes were more abundant in RRF and their number increased between 50 and 60, and 61 and 70 years and then remained approximately constant. The analysis of the sequence changes showed that each subject contained one or more changes associated to RRF in positions of D-loop region that either do not change or that change very rarely. In general the same type of RRF-associated change was not found in more than one individual; exceptions were changes in positions 189, 295, 374 and 514, detected in 20-50% of analyzed subjects. In particular the A189G age-associated mutation was found only in old individuals and prevalently in RRF. Sequencing of other two mtDNA regions showed no relevant changes in the 16S/ND1 region and two RRF-associated original mutations, G5847A and A5884C, in two very conserved positions of tRNATyr. These results indicate that each subject has its own pattern of RRF-associated mutations in both coding and non-coding region of human mtDNA.


Experimental Gerontology | 2002

Antioxidant pathways in human aged skeletal muscle: Relationship with the distribution of type II fibers

Orietta Pansarasa; Giorgio Felzani; Jacopo Vecchiet; Fulvio Marzatico

Type II fiber loss and reactive oxygen species (ROS)-induced damage are hallmarks of muscle aging. The aim of this study was to analyze whether there exists a relationship between age-dependent changes in cellular antioxidant capacity and type II fiber loss in aged human skeletal muscles. Forty-five male and female subjects ranging in age from 65 to 90 year-old were divided into +40 and -40% type II fiber groups. We measured both total and Mn superoxide dismutase (total and MnSOD), glutathione peroxidase (GSHPx) and catalase (CAT) activities. We also measured the reduced and oxidized forms of glutathione (GSH and GSSG) and lipid peroxide (LPO) levels. Total SOD activity was lower in the -40% type II fiber group than in the +40% group; MnSOD tended to be lower but data are not statistically consistent. Both GSHPx and CAT activities remained unchanged; as did GSH, GSSG and GSH/GSSG ratio. Finally, muscle samples with -40% type II fibers had a significantly higher LPO content compared to those with +40% type II fibers. In summary, a relationship between human skeletal muscle aging, type II fiber loss and ROS reactions seems to exist.


Mechanisms of Ageing and Development | 2001

Succinic dehydrogenase activity in human muscle mitochondria during aging: a quantitative cytochemical investigation

Patrizia Fattoretti; Jacopo Vecchiet; Giorgio Felzani; Natascia Gracciotti; Moreno Solazzi; Ugo Caselli; Carlo Bertoni-Freddari

A quantitative cytochemical study has been carried out on succinic dehydrogenase (SDH) activity in biopsy samples of vastus lateralis (VL) and anterior tibialis (AT) muscles from healthy men undergoing orthopaedic surgery. According to their age, the patients were divided into: young (25.0+/-4.4 years), middle-aged (50.4+/-7.5 years) and old (75.5+/-3.9 years) groups. Bioptically excised samples were processed for copper ferrocyanide preferential SDH cytochemistry. By a computer-assisted image analyser, we calculated the ratio (R): overall area of the precipitates due to the enzyme activity/area of each mitochondrion. No significant difference was found among the three age groups, despite an 8% increase of R in the adult vs. the other groups. R values are related to mitochondrial morphofunctional features since they may be modulated by enzyme activity and the physico-chemical conditions of the organelle membranes. Thus, R quantitation enables to estimate the mitochondrial capacities for adenosinetriphosphate provision. In this context, our present findings confirm previous data reporting a substantial age-related stability of muscle mitochondrial enzyme levels. In aging, energy-deficient sarcomeres are supported to be negatively selected and eliminated, while the surviving ones appear to maintain an adequate SDH activity.


Age | 2002

A MORPHOMETRIC STUDY ON HUMAN MUSCLE MITOCHONDRIA IN AGING

Carlo Bertoni-Freddari; Patrizia Fattoretti; Ugo Caselli; Belinda Giorgetti; Stefano Albanelli; Francesco Torelli; Giorgio Felzani; Jacopo Vecchiet

Mitochondria are dynamic organelles capable of significant changes of their ultrastructural features according to the tissue-specific energy demands. In human biopsies of vastus lateralis and anterior tibialis muscles from young (25.0 ± 4.4 years), middle-aged (50.4 ± 7.5 years) and old (75.5±3.9 years) healthy volunteers, we carried out a morphometric study on subsarcolemmal and intermyofibrillar mitochondria to assess whether age-related alterations of the morphology of these organelles contribute to the muscle performance decay in aging. By computer-assisted methods, we measured: the average area (MAA), the longer diameter (Dmax) and the ratio perimeter to area (pleomorphic index: Plei) of mitochondria. No significant age-related ultrastructural differences were found either in subsarcolemmal or intermyofibrillar organelles. However, in middle-aged as well as in the old group of patients vs. the young one, MAA and Dmax showed a clear trend to decrease, while Plei showed a marked, age-related tendency to increase. Higher percentages of less pleomorphic organelles were found in the youngest group of patients and this was particularly evident in the subsarcolemmal mitochondrial population. In addition to reporting on discrete aspects of mitochondrial ultrastructure, MAA, Dmax and Plei are closely related to each other and provide a reliable index of the muscle mitochondria adaptive response to age. Thus, we interpret our results as indicating a substantial preservation of muscle mitochondrial ultrastructure during aging.

Collaboration


Dive into the Giorgio Felzani's collaboration.

Top Co-Authors

Avatar

Jacopo Vecchiet

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge