Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Fornaini is active.

Publication


Featured researches published by Giorgio Fornaini.


Analytical Biochemistry | 1987

A very fast ion-pair reversed-phase HPLC method for the separation of the most significant nucleotides and their degradation products in human red blood cells

Vilberto Stocchi; Luigi Cucchiarini; Franco Canestrari; M.Piera Piacentini; Giorgio Fornaini

A simple and fast ion pair reversed-phase high-performance liquid chromatographic method has been developed for the simultaneous determination of ATP, ADP, AMP, GTP, GDP, IMP, NADP+, NADPH+, NAD+, NADH, ADP-ribose, inosine, adenosine, hypoxanthine, and xanthine. This method allows us to have a complete picture of the most important nucleotides present in fresh human erythrocytes. Furthermore it is particularly useful in the study of the erythrocyte adenine nucleotide catabolism allowing the detection of degradation products such as IMP, inosine, adenosine, hypoxanthine, and xanthine. The separation of the compounds under investigation is achieved in less than 15 min using a reversed-phase 3-micron Supelcosil LC-18 column and adding tetrabutylammonium, as ion-pair agent, to the buffers. The short time of analysis, the high reproducibility of the system, and the accurate evaluation of the compounds of interest make this method particularly suitable for routine analysis. Finally it is possible to use this assay as an alternative method of measuring activities of enzymes which catalyze reactions involving some of these compounds, as in the case of Na+-K+ ATPase, AMP deaminase, and adenosine deaminase.


Mechanisms of Ageing and Development | 1988

Effect of age on some properties of mice erythrocytes

Mauro Magnani; L. Rossi; Vilberto Stocchi; Luigi Cucchiarini; G. Piacentini; Giorgio Fornaini

The hematological parameters of young (2-month-old) and old (2-year-old) mice were compared. No differences could be detected with the exception of an increased percentage of reticulocytes in the old animals suggesting that anemia in senescent mice does not occur. Red blood cell mean half-life in old mice was 8 +/- 0.8 days compared to 12 +/- 1 days in young mice. This reduced survival of red blood cell is not due to a different rate of cell phagocytosis in the reticulohistiocytic system of young and old animals since erythrocytes from young mice have the same mean half-life when injected both in young and old animals and vice versa. Thus, the old mice have a reduced red cell life-span but the same hematocrit of the young, suggesting that old animals possess a chronologically younger population of erythrocytes than do young animals. This has been confirmed by measuring the specific activities of some red blood cell age-dependent enzymes (hexokinase, glucose-6-phosphate dehydrogenase, pyruvate kinase) that were found to be higher in the older animals, and by the separation of erythrocytes into different density (age) groups by Percoll/albumin density gradient centrifugation. However, the erythrocytes osmotic fragility, and the cellular contents of adenine and pyridine nucleotides, as well as the content of 2,3-diphosphoglycerate and reduced glutathione, show that circulating erythrocytes in old animals constitute an heterogeneous cell population whose properties cannot be explained on the basis of a chronologically younger erythrocyte population. Furthermore, evaluation of cell components in hemopoietic tissues have shown an increased porportion of erythroid precursor cells in old animals confirming that old mice compensate for reduced red cell survival with an increased erythropoiesis.


Molecular and Cellular Biochemistry | 1984

Rabbit red blood cell hexokinase

Mauro Magnani; Vilberto Stocchi; Marina Dachà; Giorgio Fornaini

SummaryRabbit hexokinase (EC 2.7.1.1) has been shown to exist in reticulocytes as two distinct molecular forms, designated hexokinase Ia and Ib, but only one of these was consistently present in mature red cells. In vivo, hexokinase la and Ib show a decay rate of 3 and 8% a day, respectively, while in vitro they show a similar stability.The possibility that the proteolytic activities of the reticulocyte could be responsible for the fast decay of hexokinase was investigated. No differences were found in the decay rates of hexokinase la and Ib during in vitro reticulocyte maturation in presence or absence of proteolytic inhibitors. Contrariwise, many findings indicate the ATP-dependent proteolytic system of the reticulocyte as a possible mechanism. In fact, the decay of hexokinase and the degradation of 3H-globins are both stimulated by ATP and ubiquitin; they show similar kinetic properties and both disappear during reticulocyte maturation.The cellular localization of hexokinase la and Ib was shown to be responsible for the differences found between their decay rates.


Archives of Biochemistry and Biophysics | 1985

Regulatory properties of human erythrocyte hexokinase during cell ageing.

Giorgio Fornaini; Mauro Magnani; Antonio Fazi; Augusto Accorsi; Vilberto Stocchi; Marina Dachà

Human red blood cell hexokinase exists in multiple molecular forms with different isoelectric points but similar kinetic and regulatory properties. All three major isoenzymes (HK Ia, Ib, and Ic) are inhibited competitively with respect to Mg.ATP by glucose 6-phosphate (Ki = 15 microM), glucose 1,6-diphosphate (Ki - 22 microM), 2,3-diphosphoglycerate (Ki = 4 mM), ATP (Ki = 1.5 mM), and reduced glutathione (Ki = 3 mM). All these compounds are present in the human erythrocyte at concentrations able to modify the hexokinase reaction velocity. However, the oxygenation state of hemoglobin significantly modifies their free concentrations and the formation of the Mg complexes. The calculated rate of glucose phosphorylation, in the presence of the mentioned compounds, is practically identical to the measured rate of glucose utilization by intact erythrocytes (1.43 +/- 0.15 mumol h-1 ml red blood cells-1). Hexokinase in young red blood cells is fivefold higher when compared with the old ones, but the concentration of many inhibitors of the enzyme is also cell age-dependent. Glucose 6-phosphate, glucose 1,6-diphosphate, 2,3-diphosphoglycerate, ATP, and Mg all decay during cell ageing but at different rates. The free concentrations and the hemoglobin and Mg complexes of both ATP and 2,3-diphosphoglycerate with hemoglobin in the oxy and deoxy forms have been calculated. This information was utilized in the calculation of glucose phosphorylation rate during cell ageing. The results obtained agree with the measured glycolytic rates and suggest that the decay of hexokinase during cell ageing could play a critical role in the process of cell senescence and destruction.


Mechanisms of Ageing and Development | 1978

Relationship between glucose phosphorylating activities and erythrocyte age.

Giorgio Fornaini; Mauro Magnani; Marina Dachà; Mario Bossù; Vilberto Stocchi

Glucose phosphorylating activity of human erythrocytes quickly decreases during cell ageing; the electrophoretic pattern suggests that this fast decrease is due mainly to the isozyme II. We have shown that in the young cells only hexokinase I and II are responsible for the glucose phosphorylation, while in the old cells another glucose phosphorylating activity, more evident at high glucose concentration, is also present. The appearance of this activity during cell ageing could be interpreted as a post-translational modification of the native hexokinase.


Archives of Biochemistry and Biophysics | 1988

Purification, properties, and evidence for two subtypes of human placenta hexokinase type I

Mauro Magnani; Vilberto Stocchi; Giordano Serafini; Laura Chiarantini; Giorgio Fornaini

In human placenta 85% of total hexokinase activity (EC 2.7.1.1) was found in a soluble form. Of this, 70% is hexokinase type I while the remaining 30% is hexokinase type II. All the bound hexokinase is type I. Soluble hexokinase I was purified 11,000-fold by a combination of ion-exchange chromatography, affinity chromatography, and dye-ligand chromatography. The specific activity was 190 units/mg protein with a 75% yield. The enzyme shows only one band in nondenaturing polyacrylamide gel electrophoresis that stains for protein and enzymatic activity; however, two components (with Mr 112,000 and 103,000) were constantly seen in sodium dodecyl sulfate-gel electrophoresis. Many attempts were made to separate these two proteins under native conditions; however, only one peak of activity was obtained when the enzyme was submitted to gel filtration (Mr 118,000), preparative isoelectric focusing (pI 5.9), anion-exchange chromatography, hydroxylapatite chromatography, and affinity chromatography on immobilized dyes and immobilized glucosamine. The high and low molecular weight hexokinases show the same isoelectric point under denaturing conditions as determined by two-dimensional gel electrophoresis. Each hexokinase subtype was obtained by preparative sodium dodecyl sulfate electrophoresis followed by electroelution. Monospecific antibodies raised in rabbits against electroeluted high and low molecular weight hexokinases were not able to recognize the native enzymes but each of them detected both hexokinases on immunoblots. Amino acid compositions and peptide mapping by limited proteolysis of the high and low molecular weight hexokinases were also performed and suggested a strong homology between these two subtypes of human hexokinase I.


Archives of Biochemistry and Biophysics | 1983

Vanadate affects glucose metabolism of human erythrocytes

Paolino Ninfali; Augusto Accorsi; Antonio Fazi; Fulvio Palma; Giorgio Fornaini

Vanadate causes a rapid breakdown of 2,3-bisphosphoglycerate in intact erythrocytes. This metabolite is nearly stoichiometrically transformed into pyruvate, which changes the cell redox state and enhances the glycolytic flux. The results show that the vanadate effect on 2,3-bisphosphoglycerate, also evident in hemolysates, is attributable to the stimulation of a phosphatase activity of the phosphoglycerate mutase. In agreement with others (J. Carreras, F. Climent, R. Bartrons, and G. Pons (1982) Biochim. Biophys. Acta 705, 238-242), vanadate is thought to destabilize the phosphoryl form of this enzyme which shows competitive inhibition between the ion and 2,3-bisphosphoglycerate in the mutase reaction. A competitive inhibition between vanadate and glucose 1,6-bisphosphate is also found for phosphoglucomutase, without evidence for phosphatase activity toward the bisphosphate cofactor.


Biochimica et Biophysica Acta | 1984

Regulatory properties of rabbit red blood cell hexokinase at conditions close to physiological

Mauro Magnani; Vilberto Stocchi; Marina Dachà; Giorgio Fornaini

The true level of hexokinase in rabbit erythrocytes was determined by three different methods, including the spectrophotometric glucose-6-phosphate dehydrogenase coupled assay and a new radioisotopic assay. The value found at 37 degrees C (pH 7.2) was 10.23 +/- 1.90 mumol/h per ml red blood cells, which is lower than previously reported values. More than 40 cellular components of the rabbit erythrocytes were tested for their effects on the enzyme. Their intracellular concentrations were also determined. Several of these compounds were found to be competitive inhibitors of the enzyme with respect to Mg X ATP2-. Furthermore, reduced glutathione at a concentration of 1 mM was able to maintain hexokinase in the reduced state with full catalytic activity. The ability of orthophosphate to remove the inhibition of some phosphorylated compounds was examined under conditions similar to cellular (pH 7.2 and 50 microM of orthophosphate) and found to be of no practical interest. In contrast, the binding of ATP4- and 2,3-diphosphoglycerate to the rabbit hemoglobin significantly modifies their intracellular concentrations and the formation of the respective Mg complexes. The pH-dependence of the reaction velocity and of the kinetic properties of the enzyme in different buffer systems were also considered. This information was computerized, and the rate of glucose phosphorylation in the presence of the mentioned compounds was determined. The value obtained, 1.94 +/- 0.02 mumol/h per ml red blood cells, is practically identical to the measured rate of glucose utilization by intact rabbit erythrocytes (1.92 +/- 0.3 mumol/h per ml red blood cells). These results provide further evidence for the central role of hexokinase in the regulation of red blood cell glycolysis.


Archives of Biochemistry and Biophysics | 1983

Pig red blood cell hexokinase: Regulatory characteristics and possible physiological role

Mauro Magnani; Vilberto Stocchi; Elena Piatti; Marina Dachà; Giorgio Fornaini

The regulatory properties of pig erythrocyte hexokinase III have been studied. Among mammalian erythrocyte hexokinases, the pig enzyme shows the highest affinity for glucose and a positive cooperative effect with nH = 1.5 at all the MgATP concentrations studied (for 0.5 to 5 mM). Glucose at high concentrations is also an inhibitor of hexokinase III. Similarly, the apparent affinity constant for MgATP is independent of glucose concentration. Uncomplexed ATP and Mg are both competitive inhibitors with respect to MgATP. Glucose 6-phosphate, known as a stronger inhibitor of all mammalian erythrocyte hexokinases, is a poor inhibitor for the pig enzyme (Ki = 120 microM). Furthermore, this inhibition is not relieved by orthophosphate as with other mammalian red blood cell hexokinases. A variety of red blood cell-phosphorylated compounds were tested and found to be inhibitors of pig hexokinase III. Of these, glucose 1,6-diphosphate and 2,3-diphosphoglycerate displayed inhibition constants in the range of their intracellular concentrations. In an attempt to investigate the role of hexokinase type III in pig erythrocytes some metabolic properties of this cell have been studied. The adult pig erythrocyte is able to utilize 0.27 mumol of glucose/h/ml red blood cells (RBC) compared with values of 0.56-2.85 mumol/h/ml RBC for the other mammalian species. This reduced capacity to metabolize glucose results from a relatively poor ability of the cell membrane to transport glucose. In fact, all the glycolytic enzymes were present and a low intracellular glucose concentration was measured (0.5 mM against a plasma level of 5 mM). Furthermore, transport and utilization were concentration-dependent processes. Inosine, proposed as the major energy substrate of the pig erythrocyte, at physiological concentrations is not as efficient as glucose in maintaining reduced glutathione levels under oxidative stress. Furthermore, newborn pig erythrocytes (fully permeable to glucose) possess hexokinase type II as the predominant glucose-phosphorylating activity. This fact and the information derived from the study of the regulatory characteristics of hexokinase III and from metabolic studies on intact pig erythrocytes permit the hypothesis that the presence of this peculiar hexokinase isozyme (type III) enables the adult pig erythrocyte to metabolize low but appreciable amounts of glucose.


Mechanisms of Ageing and Development | 1979

Decay pattern of rabbit erythrocyte hexokinase in cell aging

Mauro Magnani; Vilberto Stocchi; Mario Bossù; Marina Dachà; Giorgio Fornaini

As previously reported, during rabbit red blood cell aging glucose phosphorylating activities show several modifications. In the first period of the red cell life span the predominant form is similar to hexokinase II, while in the mature erythrocyte the predominant glucose phosphorylating activity resembles hexokinase I. In the oldest cells glucose phosphorylating activity has a low affinity (high Km) for glucose. In this paper the modifications of hexokinase in cell aging have been studied in vivo in a young erythrocyte population synchronized by actinomycin D, and in vitro in red cells separated in fractions according to different ages. Since protein synthesis is lacking in the mature red cell, we are inclined to explain the presence of low-affinity hexokinase activity in the oldest erythrocytes as an age-dependent transformation of a primary hexokinase.

Collaboration


Dive into the Giorgio Fornaini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge