Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Gruppioni is active.

Publication


Featured researches published by Giorgio Gruppioni.


Rapid Prototyping Journal | 2008

3D restitution, restoration and prototyping of a medieval damaged skull

Massimiliano Fantini; Francesca De Crescenzio; Franco Persiani; Stefano Benazzi; Giorgio Gruppioni

Purpose – The purpose of this paper is to describe the method of virtually and physically reconstructing the missing part of a badly damaged medieval skull by means of reverse engineering, computer‐aided design (CAD) and rapid prototyping (RP) techniques.Design/methodology/approach – Laser scanning data were used to create the 3D model of the damaged skull. Starting from this digital model, a virtual reconstruction of the missing part of the skull, based on the ideal symmetry with respect to the mid‐sagittal plane, was achieved in a CAD environment. Finally, the custom‐designed model was directly fabricated by means of the RP process.Findings – The result shows that the designed missing part of the skull fits very well with the existing skeletal remains. The final physical assembly of the prototyped element on the damaged skull was tested, restoring it to its whole original shape.Research limitations/implications – The entire process was time‐consuming and may be applied just to the most representative sk...


International Journal of Legal Medicine | 2009

Geometric morphometric methods for three-dimensional virtual reconstruction of a fragmented cranium: the case of Angelo Poliziano

Stefano Benazzi; E. Stansfield; C. Milani; Giorgio Gruppioni

The process of forensic identification of missing individuals is frequently reliant on the superimposition of cranial remains onto an individuals picture and/or facial reconstruction. In the latter, the integrity of the skull or a cranium is an important factor in successful identification. Here, we recommend the usage of computerized virtual reconstruction and geometric morphometrics for the purposes of individual reconstruction and identification in forensics. We apply these methods to reconstruct a complete cranium from facial remains that allegedly belong to the famous Italian humanist of the fifteenth century, Angelo Poliziano (1454–1494). Raw data was obtained by computed tomography scans of the Poliziano face and a complete reference skull of a 37-year-old Italian male. Given that the amount of distortion of the facial remains is unknown, two reconstructions are proposed: The first calculates the average shape between the original and its reflection, and the second discards the less preserved left side of the cranium under the assumption that there is no deformation on the right. Both reconstructions perform well in the superimposition with the original preserved facial surface in a virtual environment. The reconstruction by means of averaging between the original and reflection yielded better results during the superimposition with portraits of Poliziano. We argue that the combination of computerized virtual reconstruction and geometric morphometric methods offers a number of advantages over traditional plastic reconstruction, among which are speed, reproducibility, easiness of manipulation when superimposing with pictures in virtual environment, and assumptions control.


Clinical Oral Investigations | 2014

Comparison of occlusal loading conditions in a lower second premolar using three-dimensional finite element analysis.

Stefano Benazzi; Ian R. Grosse; Giorgio Gruppioni; Gerhard W. Weber; Ottmar Kullmer

ObjectivesThis study aimed to compare the patterns of stress distribution in a lower second premolar using three conventional occlusal loadings and two more realistic loading scenarios based on occlusal contact areas.Materials and methodsThe teeth of a dried modern human skull were micro-CT scanned in maximum intercuspation contact with a Viscom X8060 NDT X-ray system. A kinematic analysis of the surface contacts between antagonistic right upper and lower teeth during the power stroke was carried out in the Occlusal Fingerprint Analyser (OFA) software. Stress distribution in the lower right second premolar was analysed using three-dimensional finite element (FE) methods, considering occlusal information taken from OFA results (cases 4–5). The output was compared to that obtained by loading the tooth with a single point force (cases 1–3).ResultsResults for cases 1–3 differ considerable from those of cases 4–5. The latter show that tensile stresses might be concentrated in grooves and fissures of the occlusal surface, in the marginal ridges, in the disto-lingual and in the distal side of the root. Moreover, the premolar experiences high tensile stresses in the buccal aspect of the crown, supporting the idea that abfraction might be a dominant factor in the aetiology of non-carious cervical lesions.ConclusionsThe application of FE methods in dental biomechanics can be advanced considering individual wear patterns.Clinical relevanceMore realistic occlusal loadings are of importance for both new developments in prosthetic dentistry and improvements of materials for tooth restoration, as well to address open questions about the worldwide spread problem of dental failure.


American Journal of Physical Anthropology | 2012

Cervical and crown outline analysis of worn Neanderthal and modern human lower second deciduous molars

Stefano Benazzi; Cinzia Fornai; Laura Buti; Michel Toussaint; Francesco Mallegni; Stefano Ricci; Giorgio Gruppioni; Gerhard W. Weber; Silvana Condemi; Annamaria Ronchitelli

Despite the general increase in digital techniques for dental morphometric analyses, only a few methods are available to study worn teeth. Moreover, permanent dentitions are studied much more frequently than deciduous teeth. In this study, we address both issues by providing a taxonomic classification of Neanderthal and modern human (MH) lower second deciduous molars (dm(2) s) through the analysis of crown and cervical outlines. Crown and cervical outlines were obtained from a three-dimensional (3D) digital sample of uniformly oriented dm(2) s. Both outlines were centered on the centroid of their area and represented by 16 pseudolandmarks obtained by equiangularly spaced radial vectors out of the centroid. We removed size information from the oriented and centered outlines with a uniform scaling of the pseudolandmark configurations to unit Centroid Size. Group shape variation was evaluated separately for the dm(2) crown and cervical outlines through a shape-space principal component (PC) analysis. Finally, quadratic discriminant analysis of a subset of PCs was used to classify the specimens. Our results demonstrate that both outlines successfully separate the two groups. Neanderthals showed a buccodistal expansion and convex lingual outline shape, whilst MHs have buccodistal reduction and straight lingual outline shape. Therefore, we confirmed that the cervical outline represents an effective parameter for distinguishing between the two taxa when dealing with worn or damaged dm(2) s.


American Journal of Physical Anthropology | 2014

Technical note: Guidelines for the digital computation of 2D and 3D enamel thickness in hominoid teeth

Stefano Benazzi; Daniele Panetta; Cinzia Fornai; Michel Toussaint; Giorgio Gruppioni; Jean-Jacques Hublin

The study of enamel thickness has received considerable attention in regard to the taxonomic, phylogenetic and dietary assessment of human and non-human primates. Recent developments based on two-dimensional (2D) and three-dimensional (3D) digital techniques have facilitated accurate analyses, preserving the original object from invasive procedures. Various digital protocols have been proposed. These include several procedures based on manual handling of the virtual models and technical shortcomings, which prevent other scholars from confidently reproducing the entire digital protocol. There is a compelling need for standard, reproducible, and well-tailored protocols for the digital analysis of 2D and 3D dental enamel thickness. In this contribution we provide essential guidelines for the digital computation of 2D and 3D enamel thickness in hominoid molars, premolars, canines and incisors. We modify previous techniques suggested for 2D analysis and we develop a new approach for 3D analysis that can also be applied to premolars and anterior teeth. For each tooth class, the cervical line should be considered as the fundamental morphological feature both to isolate the crown from the root (for 3D analysis) and to define the direction of the cross-sections (for 2D analysis).


American Journal of Physical Anthropology | 2014

Technical Note: Virtual reconstruction of KNM-ER 1813 Homo habilis cranium

Stefano Benazzi; Giorgio Gruppioni; David S. Strait; Jean-Jacques Hublin

A very limiting factor for paleoanthropological studies is the poor state of preservation of the human fossil record, where fragmentation and deformation are considered normal. Although anatomical information can still be gathered from a distorted fossil, such specimens must typically be excluded from advanced morphological and morphometric analyses, thus reducing the fossil sample size and, ultimately, our knowledge of human evolution. In this contribution we provide the first digital reconstruction of the KNM-ER 1813 Homo habilis cranium. Based on state of-the-art three-dimensional digital modeling and geometric morphometric (GM) methods, the facial portion was aligned to the neurocranium, the overall distortion was removed, and the missing regions were restored. The reconstructed KNM-ER 1813 allows for an adjustment of the anthropometric measurements gathered on the original fossil. It is suitable for further quantitative studies, such as GM analyses focused on skull morphology or for finite element analysis to explore the mechanics of early Homo feeding behavior and diet.


PLOS ONE | 2013

The Evolutionary Paradox of Tooth Wear: Simply Destruction or Inevitable Adaptation?

Stefano Benazzi; Huynh Nhu Nguyen; Dieter Schulz; Ian R. Grosse; Giorgio Gruppioni; Jean-Jacques Hublin; Ottmar Kullmer

Over the last century, humans from industrialized societies have witnessed a radical increase in some dental diseases. A severe problem concerns the loss of dental materials (enamel and dentine) at the buccal cervical region of the tooth. This “modern-day” pathology, called non-carious cervical lesions (NCCLs), is ubiquitous and worldwide spread, but is very sporadic in modern humans from pre-industrialized societies. Scholars believe that several factors are involved, but the real dynamics behind this pathology are far from being understood. Here we use an engineering approach, finite element analysis (FEA), to suggest that the lack of dental wear, characteristic of industrialized societies, might be a major factor leading to NCCLs. Occlusal loads were applied to high resolution finite element models of lower second premolars (P2) to demonstrate that slightly worn P2s envisage high tensile stresses in the buccal cervical region, but when worn down artificially in the laboratory the pattern of stress distribution changes and the tensile stresses decrease, matching the results obtained in naturally worn P2s. In the modern industrialized world, individuals at advanced ages show very moderate dental wear when compared to past societies, and teeth are exposed to high tensile stresses at the buccal cervical region for decades longer. This is the most likely mechanism explaining enamel loss in the cervical region, and may favor the activity of other disruptive processes such as biocorrosion. Because of the lack of dental abrasion, our masticatory apparatus faces new challenges that can only be understood in an evolutionary perspective.


American Journal of Physical Anthropology | 2013

Individual tooth macrowear pattern guides the reconstruction of Sts 52 (Australopithecus africanus) dental arches

Stefano Benazzi; Ottmar Kullmer; Dieter Schulz; Giorgio Gruppioni; Gerhard W. Weber

The functional restoration of the occlusal relationship between maxillary and mandibular tooth rows is a major challenge in modern dentistry and maxillofacial surgery. Similar technical challenges are present in paleoanthropology when considering fragmented and deformed mandibular and maxillary fossils. Sts 52, an Australopithecus africanus specimen from Sterkfontein Member 4, represents a typical case where the original shape of the dental arches is no longer preserved. It includes a partial lower face (Sts 52a) and a fragmented mandible (Sts 52b), both incomplete and damaged to such an extent to thwart attempts at matching upper and lower dentitions. We show how the preserved macro wear pattern of the tooth crowns can be used to functionally reconstruct Sts 52s dental arches. High-resolution dental stone casts of Sts 52 maxillary and mandibular dentition were mounted and repositioned in a dental articulator. The occlusal relationship between antagonists was restored based on the analysis of the occlusal wear pattern of each preserved tooth, considering all dental contact movements represented in the occlusal compass. The reconstructed dental arches were three-dimensional surface scanned and their occlusal kinematics tested in a simulation. The outcome of this contribution is the first functional restoration of A. africanus dental arches providing new morphometric data for specimen Sts 52. It is noteworthy that the method described in this case study might be applied to several other fossil specimens.


Journal of Forensic Sciences | 2009

Sex Assessment from the Sacral Base by Means of Image Processing

Stefano Benazzi; Claudia Maestri; Simona Parisini; Francesco Vecchi; Giorgio Gruppioni

Abstract:  To help improve sex assessment from skeletal remains, the present study considers the diagnostic value of the sacral base (basis osseus sacri) based on its planar image and related metric data. For this purpose, 114 adult sacra of known sex and age from two early 20th century Italian populations were examined, the first from Bologna, northern Italy (n = 76), and the second from Sassari, Sardinia (n = 38). Digital photos of the sacral base were taken with each bone in a standardized orientation. Technical drawing software was used to trace its profile and to measure related dimensions (area, perimeter, and breadth of S1 and total breadth of the sacrum). The measurements were subjected to discriminant and classification function analyses. The sex prediction success of 93.2% for the Bolognese sample, 81.6% for the Sassarese sample, and 88.3% for the pooled sample indicates that the first sacral vertebra is a good character for sex determination.


Journal of Human Evolution | 2009

Improving the spatial orientation of human teeth using a virtual 3D approach

Stefano Benazzi; Massimiliano Fantini; Francesca De Crescenzio; Franco Persiani; Giorgio Gruppioni

Since teeth are resistant to decomposition processes, they provide important and at times unique sources of information about fossil humans. Fortunately, dental remains reflect significant evolutionary changes. These changes make a very important and often exclusive contribution to the definition of new taxa or the attribution of fossil specimens to existing taxa. The traditional approach to dental morphometric analyses usually focuses on the recording of several measures of the tooth with calipers, especially the two basic crown diameters (buccolingual and mesiodistal). However, since these measures do not adequately represent the complex morphology of the tooth, 2D images and 3D digital models of dental morphology have been used. For both types of analysis, the possibility of correctly comparing homologous teeth depends on the adoption of a common orientation system. The lack of such a system makes it difficult to compare the results of different studies. Here we describe a new method for orienting teeth specifically devised for the upper and lower first molar (M1). Samples of unworn maxillary (n=15) and mandibular (n=15) first molars of modern humans were scanned with a Roland Picza 3D digitizer. The 3D virtual models were used to compare our new orientation method with those proposed in the literature. The new orientation system, which meets a geometric criterion, is based on three points identified on the cervical line and ensures acceptable repeatability of the spatial positioning and orientation independent of the shape and wear of the first molar under investigation. This orientation system is a first step toward the creation of a virtual set of hominid and fossil human first molars, which will allow us to make comparisons via a sophisticated and noninvasive approach. This pilot study also provides guidelines to extend the new methodology to the other types of teeth.

Collaboration


Dive into the Giorgio Gruppioni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ottmar Kullmer

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Vecchi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Buti

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge