Giorgio Mancinelli
University of Salento
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giorgio Mancinelli.
Advances in Ecological Research | 2011
Christian Mulder; Alice Boit; Michael Bonkowski; Peter C. De Ruiter; Giorgio Mancinelli; Marcel G. A. van der Heijden; Harm J. van Wijnen; J. Arie Vonk; M. Rutgers
Summary 1. New patterns and trends in land use are becoming increasingly evident in Europes heavily modified landscape and else whereas sustainable agriculture and nature restoration are developed as viable long-term alternatives to intensively farmed arable land. The success of these changes depends on how soil biodiversity and processes respond to changes in management. To improve our understanding of the community structure and ecosystem functioning of the soil biota, we analyzed abiotic variables across 200 sites, and biological variables across 170 sites in The Netherlands, one of the most intensively farmed countries. The data were derived from the Dutch Soil Quality Network (DSQN), a long-term monitoring framework designed to obtain ecological insight into soil types ( STs ) and ecosystem types ( ETs ). 2. At the outset we describe ST s and biota, and we estimate the contribution of various groups to the provision of ecosystem services. We focused on interactive effects of soil properties on community patterns and ecosystem functioning using food web models. Ecologists analyze soil food webs by means of mechanistic and statistical modelling, linking network structure to energy flow and elemental dynamics commonly based on allometric scaling. 3. We also explored how predatory and metabolic processes are constrained by body size, diet and metabolic type, and how these constraints govern the interactions within and between trophic groups. In particular, we focused on how elemental fluxes determine the strengths of ecological interactions, and the resulting ecosystem services, in terms of sustenance of soil fertility. 4. We discuss data mining, food web visualizations, and an appropriate categorical way to capture subtle interrelationships within the DSQN dataset. Sampled metazoans were used to provide an overview of belowground processes and influences of land use. Unlike most studies to date we used data from the entire size spectrum, across 15 orders of magnitude, using body size as a continuous trait crucial for understanding ecological services. 5. Multimodality in the frequency distributions of body size represents a performance filter that acts as a buffer to environmental change. Large differences in the body-size distributions across ET s and ST s were evident. Most observed trends support the hypothesis that the direct influence of ecological stoichiometry on the soil biota as an independent predictor (e.g. in the form of nutrient to carbon ratios), and consequently on the allometric scaling, is more dominant than either ET or ST . This provides opportunities to develop a mechanistic and physiologically oriented model for the distribution of species’ body sizes, where responses of invertebrates can be predicted. 6. Our results highlight the different roles that organisms play in a number of key ecosystem services. Such a trait-based research has unique strengths in its rigorous formulation of fundamental scaling rules, as well as in its verifiability by empirical data. Nonetheless, it still has weaknesses that remain to be addressed, like the consequences of intraspecific size variation, the high degree of omnivory, and a possibly inaccurate assignment to trophic groups. 7. Studying the extent to which nutrient levels influence multitrophic interactions and how different land-use regimes affect soil biodiversity is clearly a fruitful area for future research to develop predictive models for soil ecosystem services under different management regimes. No similar efforts have been attempted previously for soil food webs, and our dataset has the potential to test and further verify its usefulness at an unprecedented space scale.
Advances in Ecological Research | 2013
Christian Mulder; Farshid S. Ahrestani; Michael Bahn; David A. Bohan; Michael Bonkowski; Bryan S. Griffiths; Rannveig Anna Guicharnaud; Jens Kattge; Paul H. Krogh; Sandra Lavorel; Owen T. Lewis; Giorgio Mancinelli; Shahid Naeem; Josep Peñuelas; Hendrik Poorter; Peter B. Reich; Loreto Rossi; Graciela M. Rusch; Jordi Sardans; Ian J. Wright
Abstract We examine the potential of trait-based parameters of taxa for linking above- and below-ground ecological networks (hereafter ‘green’ and ‘brown’ worlds) to understand and predict community dynamics. This synthesis considers carbon, nitrogen and phosphorus-related traits, the abundance of component species and their size distribution across trophic levels under different forms of management. We have analysed existing and novel databases on plants, microbes and invertebrates that combine physico-chemical and biological information from (agro)ecosystems spanning the globe. We found (1) evidence that traits from above- and below-ground systems may be integrated in the same model and (2) a much greater than expected stoichiometric plasticity of plants and microbes which has implications for the entire food-web mass–abundance scaling. Nitrogen and phosphorus are primary basal resources (hence, drivers) and more retranslocation of P than of N from leaves will lead to higher N:P in the litter and soil organic matter. Thus, under nutrient-rich conditions, higher foliar concentrations of N and P are reflected by lower N:P in the brown litter, suggesting less P retranslocated than N. This apparent stoichiometric dichotomy between green and brown could result in shifts in threshold elemental ratios critical for ecosystem functioning. It has important implications for a general food-web model, given that resource C:N:P ratios are generally assumed to reflect environmental C:N:P ratios. We also provide the first evidence for large-scale allometric changes according to the stoichiometry of agroecosystems. Finally, we discuss insights that can be gained from integrating carbon and nitrogen isotope data into trait-based approaches, and address the origin of changes in Δ 13 C and Δ 15 N fractionation values in relation to consumer–resource body-mass ratios.
Methods in Ecology and Evolution | 2013
Nicola Zaccarelli; Daniel I. Bolnick; Giorgio Mancinelli
Summary In the last decade, an increasing number of papers testifies a renewed interest in the topic of individual specialization in resource use and its implication at higher levels of ecological organization. We present the package R Individual Specialization (RInSp) for the free open-source statistical software r. RInSp provides a comprehensive set of classical and recently proposed indices for quantifying the degree of individual specialization using both categorical and continuous resource use data. The package also includes tools for ad hoc Monte Carlo and jackknife resampling procedures for significance testing, plotting and input/output data manipulation. The use of RInSp is demonstrated by two examples. In addition, the potential of the package to be implemented beyond its original scope for multi-level quantitative analyses of individual trait variance in natural communities is illustrated.
Oecologia | 2002
Giorgio Mancinelli; Maria Letizia Costantini; Loreto Rossi
Abstract. An exclosure experiment was carried out in the reed-dominated littoral zone of a volcanic lake (Lake Vico, central Italy) to test whether the impact of predatory fish on benthic invertebrates cascades on fungal colonisation and breakdown of leaf detritus. The abundance, biomass, and Shannon diversity index of the invertebrate assemblage colonising Phragmites australis leaf packs placed inside: (1) full-exclosure cages, (2) cages allowing access only to small-sized fish predators, and (3) cageless controls, were monitored over a 45-day period together with the mass loss and associated fungal biomass of leaf packs. The species composition of the fungal assemblage was further assessed at the end of the manipulation. In general, invertebrate predators did not show any significant response to fish exclusion, either on a trophic guild or on a single taxon level. In contrast, the exclusion of large predatory fish induced a diverse spectrum of changes in the abundance and population size-structure of dominant detritivore taxa, ultimately increasing the biomass and Shannon diversity index of the whole detritivorous guild. These changes corresponded with significant variations in leaf detritus decay rates as well as in the biomass and assemblage structure of associated fungal colonisers. Our experimental findings provide evidence that in Lake Vico effects of fish predators on invertebrate detritivores influence the fungal conditioning and breakdown of the detrital substrate. We conclude that in lacustrine littoral zones predator-driven constraints may structure lower trophic levels of detritus-based food webs and affect the decomposition of leaf detritus originated from the riparian vegetation.
Hydrobiologia | 1998
Giorgio Mancinelli; Stefano Fazi; Loreto Rossi
In sediments sampled in Northern Adriatic Sea invertebrate benthic macrofauna was examined in comparison with both substratum bulk parameters (average grain size, sorting, total organic matter content) and attributes of grain size classes (specific organic matter content of dimensional fractions). The aims were: 1) to determine whether variations of community overall parameters (total spatial density, number of taxa) and in numerically dominant feeding types (deposit-feeders and suspension-feeders) patterns were related to changes in sediment general properties; 2) to evaluate whether the observed patterns of abundance for deposit- and filter-feeders had more valid correlates in specific properties of substratum dimensional fractions.Number of taxa and animal spatial density resulted conventionally related to substratum bulk parameters while feeding types patterns in comparison with sediment total organic matter content exibited a reciprocal negative effect; only when both feeding types and sediment structure were resolved to their specific attributes in terms of prevalence of tubicolous taxa among deposit-feeders and organic matter richness of single dimensional fractions, the analysis emphasized patterns unequally affected by specific size fractions abundance and organic matter content: deposit feeders demonstrated to be related to the presence in the substrate of intermediate grain size classes necessary for tube-building. Those intermediate fractions proved to be more adequate descriptors than average grain size or other overall sediment parameters per se of relations actually established between feeding types and the complex nature of bottom sediments.Our results emphasize that in the Northern Adriatic Sea, sediment organic matter content may represent a factor of minor importance in comparison with other substrate attributes, for which it may be necessary a detailed analysis of sediment structure. Thus, we concluded that the complexity of soft-bottom communities may defy any simple paradigm relating macrobenthic patterns to any single sediment bulk attribute, and we propose a shift in focus towards an higher resolution of both functional groups in macrobenthic associations (as already suggested in other investigations) and of substratum structural description.
Oecologia | 2007
Giorgio Mancinelli; Letizia Sabetta; Alberto Basset
The mechanisms regulating the build-up of invertebrate assemblages on ephemeral detritus patches are still poorly understood. Here, the daily colonization of decaying reed leaves by vagile macroinvertebrates was monitored in an brackish lake in Italy. The highly variable abundance patterns of dominant taxa were analysed by spectral and geostatistical techniques to test for nonrandomness and to further determine whether they were related to body size. Comparisons between two contrasting sites allowed an assessment of the generality of our observations. At both sites, the macroinvertebrate assemblage was dominated by three detritivorous taxa, i.e. the isopod Lekanesphaera monodi, the amphipod Microdeutopus gryllotalpa and the polychaete Neanthes caudata. Overall, their abundance patterns were characterised by short-term fluctuations of a nonrandom, autocorrelated nature. In addition, a significant covariation was observed between the average body mass of each taxon and the complexity of the respective abundance pattern, expressed by the fractal dimension D. The covariation was observed at both study sites, notwithstanding the diverging outcomes of bivariate pattern comparisons for similar-sized taxa. Our findings indicate that the size of macroinvertebrates is strongly related to the short-term dynamics of their abundance patterns on reed detritus, suggesting that the interaction between vagile consumers and ephemeral resource patches might be influenced by individual energetics. The implications of size-related constraints for the coexistence of species on decaying detrital patches are discussed.
Rend. Fis. Acc. Lincei | 2014
Leonardo Carrozzo; Luigi Potenza; Pasquale Carlino; Maria Letizia Costantini; Loreto Rossi; Giorgio Mancinelli
The blue crab Callinectes sapidus, native to the western coasts of the Atlantic Ocean, has been introduced in Mediterranean waters where it is currently considered an invasive species. Here, we verified the occurrence of an established population of C. sapidus in the Torre Colimena basin, a Mediterranean habitat located in SE Italy, and provided a first assessment of its functional role in a Mediterranean coastal ecosystem. Crab traps were used to estimate the species abundance at a seasonal frequency; in addition, its trophic position was estimated in summer using nitrogen stable isotopes. Estimations were performed using both a generally adopted value of 3.4 ‰ for the nitrogen trophic level fractionation factor ∆15N, and species-specific estimations obtained from the literature. C. sapidus was sampled throughout the year, reaching peak abundances in summer. This result, taken together with the observed patterns of variation in the average body size and sex ratio of captured specimens, provided evidence of a fully established population in the Torre Colimena basin. The estimated trophic position of the crab was consistent with the literature information on western Atlantic populations, and resulted, irrespective of the fractionation factor used, significantly higher than those characterizing an autochthonous brachyuran (Pachygrapsus marmoratus) and a fish predator (Sparus aurata). The present study provided novel information on the occurrence and potential functional impact of this non-indigenous species in Mediterranean coastal habitats, highlighting current knowledge lacunae and identifying future research lines on marine alien species.
Food Chemistry | 2016
Maurizio Zotti; Sandra Angelica De Pascali; Laura Del Coco; Danilo Migoni; Leonardo Carrozzo; Giorgio Mancinelli; Francesco Paolo Fanizzi
The metabolomic profile of blue crab (Callinectes sapidus) captured in the Acquatina lagoon (SE Italy) was compared to an autochthonous (Eriphia verrucosa) and to a commercial crab species (Cancer pagurus). Both lipid and aqueous extracts of raw claw muscle were analyzed by (1)H NMR spectroscopy and MVA (multivariate data analysis). Aqueous extracts were characterized by a higher inter-specific discriminating power compared to lipid fractions. Specifically, higher levels of glutamate, alanine and glycine characterized the aqueous extract of C. sapidus, while homarine, lactate, betaine and taurine characterized E. verrucosa and C. pagurus. On the other hand, only the signals of monounsaturated fatty acids distinguished the lipid profiles of the three crab species. These results support the commercial exploitation and the integration of the blue crab in human diet of European countries as an healthy and valuable seafood.
Heliyon | 2016
Maurizio Zotti; Laura Del Coco; Sandra Angelica De Pascali; Danilo Migoni; Salvatrice Vizzini; Giorgio Mancinelli; Francesco Paolo Fanizzi
The proximate composition and element contents of claw muscle tissue of Atlantic blue crabs (Callinectes sapidus) were compared with the native warty crab (Eriphia verrucosa) and the commercially edible crab (Cancer pagurus). The scope of the analysis was to profile the chemical characteristics and nutritive value of the three crab species. Elemental fingerprints showed significant inter-specific differences, whereas non-significant variations in the moisture and ash contents were observed. In the blue crab, protein content was significantly lower than in the other two species, while its carbon content resulted lower than that characterizing only the warty crab. Among micro-elements, Ba, Cr, Cu, Li, Mn, Ni, and Pb showed extremely low concentrations and negligible among-species differences. Significant inter-specific differences were observed for Na, Sr, V, Ba, Cd and Zn; in particular, cadmium and zinc were characterized in the blue crab by concentrations significantly lower than in the other two species. The analysis of the available literature on the three species indicated a general lack of comparable information on their elemental composition. The need to implement extended elemental fingerprinting techniques for shellfish quality assessment is discussed, in view of other complementary profiling methods such as NMR-based metabolomics.
Journal of Tropical Ecology | 2004
Maria Letizia Costantini; Letizia Sabetta; Giorgio Mancinelli; Loreto Rossi
Lake Titicaca is the largest freshwater lake in South America and one of the highest and oldest of the worlds large lakes, but very little of its ecology is known. We report results from a study on the spatial variation of decomposition rate of Schoenoplectus tatora in Inner Puno Bay affected by direct wastewater discharges. The aims of the research were: (1) to evaluate the effect of benthos exclusion and the influence of other environmental factors on decomposition and (2) to map the decomposition rate in order to describe the spatial heterogeneity in the water body. We carried out the study at 21 sampling points using both fine-meshed and coarse-meshed litterbags to exclude and to allow detritivore action, respectively. Decomposition was on the average faster in the former than in the latter treatment. However, the difference decreased with increasing detritivore abundance, and reversed in the most densely populated waters of the bay. Coupled spatial dependence of the decomposition rate and temperature was observed. Both variables were related with the distance from the wastewater discharges, suggesting that thermal pollution constrains the decomposition rate within the inner bay. Detritivores did not change the general trend imposed by temperature, but their presence increased the spatial heterogeneity of the process.