Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Parmiani is active.

Publication


Featured researches published by Giorgio Parmiani.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Phenotypic characterization of human colorectal cancer stem cells

Piero Dalerba; Scott J. Dylla; In Kyung Park; Rui Liu; Xinhao Wang; Robert W. Cho; Timothy Hoey; Austin L. Gurney; Emina Huang; Diane M. Simeone; Andrew A. Shelton; Giorgio Parmiani; Chiara Castelli; Michael F. Clarke

Recent observations indicate that, in several types of human cancer, only a phenotypic subset of cancer cells within each tumor is capable of initiating tumor growth. This functional subset of cancer cells is operationally defined as the “cancer stem cell” (CSC) subset. Here we developed a CSC model for the study of human colorectal cancer (CRC). Solid CRC tissues, either primary tissues collected from surgical specimens or xenografts established in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, were disaggregated into single-cell suspensions and analyzed by flow cytometry. Surface markers that displayed intratumor heterogeneous expression among epithelial cancer cells were selected for cell sorting and tumorigenicity experiments. Individual phenotypic cancer cell subsets were purified, and their tumor-initiating properties were investigated by injection in NOD/SCID mice. Our observations indicate that, in six of six human CRC tested, the ability to engraft in vivo in immunodeficient mice was restricted to a minority subpopulation of epithelial cell adhesion molecule (EpCAM)high/CD44+ epithelial cells. Tumors originated from EpCAMhigh/CD44+ cells maintained a differentiated phenotype and reproduced the full morphologic and phenotypic heterogeneity of their parental lesions. Analysis of the surface molecule repertoire of EpCAMhigh/CD44+ cells led to the identification of CD166 as an additional differentially expressed marker, useful for CSC isolation in three of three CRC tested. These results validate the stem cell working model in human CRC and provide a highly robust surface marker profile for CRC stem cell isolation.


International Journal of Cancer | 1999

Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1.

Marie Marchand; Nicolas van Baren; P. Weynants; Vincent Brichard; B. Dréno; Marie Hélène Tessier; Elaine M. Rankin; Giorgio Parmiani; Yves Humblet; A. Bourlond; Romain Vanwijck; Danielle Liénard; M. Beauduin; Pierre-Yves Dietrich; Vincenzo Russo; Joseph Kerger; Giuseppe Masucci; Elke Jäger; Jacques De Grève; Jens Atzpodien; Francis Brasseur; Pierre Coulie; Pierre van der Bruggen; Thierry Boon

Thirty‐nine tumor‐bearing patients with metastatic melanoma were treated with 3 subcutaneous injections of the MAGE‐3.A1 peptide at monthly intervals. No significant toxicity was observed. Of the 25 patients who received the complete treatment, 7 displayed significant tumor regressions. All but one of these regressions involved cutaneous metastases. Three regressions were complete and 2 of these led to a disease‐free state, which persisted for more than 2 years after the beginning of treatment. No evidence for a cytolytic T lymphocyte (CTL) response was found in the blood of the 4 patients who were analyzed, including 2 who displayed complete tumor regression. Our results suggest that injection of the MAGE‐3.A1 peptide induced tumor regression in a significant number of the patients, even though no massive CTL response was produced. Int. J. Cancer 80:219–230, 1999.


Journal of Clinical Oncology | 2007

Identification of a New Subset of Myeloid Suppressor Cells in Peripheral Blood of Melanoma Patients With Modulation by a Granulocyte-Macrophage Colony-Stimulation Factor–Based Antitumor Vaccine

Paola Filipazzi; Roberta Valenti; Veronica Huber; Lorenzo Pilla; Paola Canese; Manuela Iero; Chiara Castelli; Luigi Mariani; Giorgio Parmiani; Licia Rivoltini

PURPOSE Phenotypic and functional features of myeloid suppressor cells (MSC), which are known to serve as critical regulators of antitumor T-cell responses in tumor-bearing mice, are still poorly defined in human cancers. Here, we analyzed myeloid subsets with suppressive activity present in peripheral blood of metastatic melanoma patients and evaluated their modulation by a granulocyte-macrophage colony-stimulating factor (GM-CSF)--based antitumor vaccine. PATIENTS AND METHODS Stage IV metastatic melanoma patients (n = 16) vaccinated with autologous tumor-derived heat shock protein peptide complex gp96 (HSPPC-96) and low-dose GM-CSF provided pre- and post-treatment whole blood specimens. Peripheral-blood mononuclear cells (PBMCs) were analyzed by flow cytometry, separated into cellular subsets, and used for in vitro proliferation assays. PBMCs from stage-matched metastatic melanoma patients (n = 12) treated with non-GM-CSF-based vaccines (ie, HSPPC-96 alone or interferon alfa/melanoma-derived peptides) or sex- and age-matched healthy donors (n = 16) were also analyzed for comparison. RESULTS The lack of or low HLA-DR expression was found to identify a CD14+ cell subset highly suppressive of lymphocyte functions. CD14+HLA-DR-/lo cells were significantly expanded in all metastatic melanoma patients, whereas they were undetectable in healthy donors. Suppressive activity was mediated by transforming growth factor beta (TGF-beta), whereas no involvement of the arginase and inducible nitric oxide synthase pathways could be detected. CD14+HLA-DR-/lo cells, as well as spontaneous ex vivo release and plasma levels of TGF-beta, were augmented after administration of the HSPPC-96/GM-CSF vaccine. No enhancement of the CD14+-mediated suppressive activity was found in patients receiving non-GM-CSF-based vaccines. CONCLUSION CD14+HLA-DR-/lo cells exerting TGF-beta-mediated immune suppression represent a new subset of MSC potentially expandable by the administration of GM-CSF-based vaccines in metastatic melanoma patients.


Journal of Experimental Medicine | 2002

Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of FasL-bearing Microvesicles

Giovanna Andreola; Licia Rivoltini; Chiara Castelli; Veronica Huber; Paola Perego; Paola Deho; Paola Squarcina; Paola Accornero; Francesco Lozupone; Luana Lugini; Annarita Stringaro; Agnese Molinari; Giuseppe Arancia; Massimo Gentile; Giorgio Parmiani; Stefano Fais

The hypothesis that FasL expression by tumor cells may impair the in vivo efficacy of antitumor immune responses, through a mechanism known as ‘Fas tumor counterattack,’ has been recently questioned, becoming the object of an intense debate based on conflicting results. Here we definitely show that FasL is indeed detectable in the cytoplasm of melanoma cells and its expression is confined to multivesicular bodies that contain melanosomes. In these structures FasL colocalizes with both melanosomal (i.e., gp100) and lysosomal (i.e., CD63) antigens. Isolated melanosomes express FasL, as detected by Western blot and cytofluorimetry, and they can exert Fas-mediated apoptosis in Jurkat cells. We additionally show that melanosome-containing multivesicular bodies degranulate extracellularly and release FasL-bearing microvesicles, that coexpress both gp100 and CD63 and retain their functional activity in triggering Fas-dependent apoptosis of lymphoid cells. Hence our data provide evidence for a novel mechanism potentially operating in Fas tumor counterattack through the secretion of subcellular particles expressing functional FasL. Such vesicles may form a sort of front line hindering lymphocytes and other immunocompetent cells from entering neoplastic lesions and exert their antitumor activity.


Clinical Cancer Research | 2007

Interleukin-12: Biological properties and clinical application

Michele Del Vecchio; Emilio Bajetta; Stefania Canova; Michael T. Lotze; Amy Wesa; Giorgio Parmiani; Andrea Anichini

Interleukin-12 (IL-12) is a heterodimeric protein, first recovered from EBV-transformed B cell lines. It is a multifunctional cytokine, the properties of which bridge innate and adaptive immunity, acting as a key regulator of cell-mediated immune responses through the induction of T helper 1 differentiation. By promoting IFN-γ production, proliferation, and cytolytic activity of natural killer and T cells, IL-12 induces cellular immunity. In addition, IL-12 induces an antiangiogenic program mediated by IFN-γ–inducible genes and by lymphocyte-endothelial cell cross-talk. The immunomodulating and antiangiogenic functions of IL-12 have provided the rationale for exploiting this cytokine as an anticancer agent. In contrast with the significant antitumor and antimetastatic activity of IL-12, documented in several preclinical studies, clinical trials with IL-12, used as a single agent, or as a vaccine adjuvant, have shown limited efficacy in most instances. More effective application of this cytokine, and of newly identified IL-12 family members (IL-23 and IL-27), should be evaluated as therapeutic agents with considerable potential in cancer patients.


Cancer Immunology, Immunotherapy | 2005

A listing of human tumor antigens recognized by T cells: March 2004 update

Luisa Novellino; Chiara Castelli; Giorgio Parmiani

The technological advances occurred in the last few years have led to a great increase in the number of tumor associated antigens (TAA) that are currently available for clinical applications. In this review we provide a comprehensive list of human tumor antigens as reported in the literature updated at Feburary 2004. The list includes all T cell-defined epitopes, while excluding analogs or artificially modified epitopes, as well as virus-encoded and antibodies-recognized antigens. TAAs are listed in alphabetical order along with the epitope sequence and the HLA allele which restricts recognition by T cells. Data on the tissue distribution of each antigen are also provided together with an extensive bibliography that allows a rapid search for any additional information may be needed on each single antigen or epitope. Overall, the updated list is a database tool for clinicians, scientists and students who have an interest in the field of tumor immunology and immunotherapy.


Journal of Clinical Oncology | 2002

Vaccination of Metastatic Melanoma Patients With Autologous Tumor-Derived Heat Shock Protein gp96-Peptide Complexes: Clinical and Immunologic Findings

Filiberto Belli; Alessandro Testori; Licia Rivoltini; Michele Maio; Giovanna Andreola; Mario Roberto Sertoli; Gianfrancesco Gallino; Adriano Piris; Alessandro Cattelan; Ivano Lazzari; Matteo Carrabba; Giorgio Scita; Cristina Santantonio; Lorenzo Pilla; Gabrina Tragni; Claudia Lombardo; Alfonso Marchianò; Paola Queirolo; Francesco Bertolini; Agata Cova; Elda Lamaj; Lucio Ascani; Roberto Camerini; Marco Corsi; Natale Cascinelli; Jonathan J. Lewis; Pramod K. Srivastava; Giorgio Parmiani

PURPOSE To determine the immunogenicity and antitumor activity of a vaccine consisting of autologous, tumor-derived heat shock protein gp96-peptide complexes (HSPPC-96, Oncophage; Antigenics, Inc, Woburn, MA) in metastatic (American Joint Committee on Cancer stage IV) melanoma patients. PATIENTS AND METHODS Sixty-four patients had surgical resection of metastatic tissue required for vaccine production, 42 patients were able to receive the vaccine, and 39 were assessable after one cycle of vaccination (four weekly injections). In 21 patients, a second cycle (four biweekly injections) was given because no progression occurred. Antigen-specific antimelanoma T-cell response was assessed by enzyme-linked immunospot (ELISPOT) assay on peripheral blood mononuclear cells (PBMCs) obtained before and after vaccination. Immunohistochemical analyses of tumor tissues were also performed. RESULTS No treatment-related toxicity was observed. Of 28 patients with measurable disease, two had a complete response (CR) and three had stable disease (SD) at the end of follow-up. Duration of CR was 559+ and 703+ days, whereas SD lasted for 153, 191, and 272 days, respectively. ELISPOT assay with PBMCs of 23 subjects showed a significantly increased number of postvaccination melanoma-specific T-cell spots in 11 patients, with clinical responders displaying a high frequency of increased T-cell activity. Immunohistochemical staining of melanoma tissues from which vaccine was produced revealed high expression of both HLA class I and melanoma antigens in seven of eight clinical responders (two with CR, three with SD, and the three with long-term disease-free survival) and in four of 12 nonresponders. CONCLUSION Vaccination of metastatic melanoma patients with autologous HSPPC-96 is feasible and devoid of significant toxicity. This vaccine induced clinical and tumor-specific T-cell responses in a significant minority of patients.


Cell Death & Differentiation | 2008

Tumour-released exosomes and their implications in cancer immunity

M Iero; R Valenti; V Huber; P Filipazzi; Giorgio Parmiani; Stefano Fais; L Rivoltini

Tumour cells release vesicular structures, defined as microvesicles or exosomes, carrying a large array of proteins from their originating cell. The expression of antigenic molecules recognized by T cells has originally suggested a role for these organelles as a cell-free antigen source for anticancer vaccines. However, recent evidence shows that tumour exosomes may also exert a broad array of detrimental effects on the immune system, ranging from apoptosis in activated antitumour T cells to impairment of monocyte differentiation into dendritic cells and induction of myeloid suppressive cells. Immunosuppressive exosomes of tumour origin can be found in neoplastic lesions and sera from cancer patients, implying a potential role of this pathway in in vivo tumour progression. Through the expression of molecules involved in angiogenesis promotion, stromal remodelling, delivery of signalling pathways through growth factor/receptor transfer, chemoresistance and genetic intercellular exchange, tumour exosomes could represent a versatile tool for moulding host environment. Hence, their secretion by neoplastic cells may in the future become a novel pathway to target for therapeutic intervention in cancer patients.


Cancer Research | 2006

Human Tumor-Released Microvesicles Promote the Differentiation of Myeloid Cells with Transforming Growth Factor-β–Mediated Suppressive Activity on T Lymphocytes

Roberta Valenti; Veronica Huber; Paola Filipazzi; Lorenzo Pilla; Gloria Sovena; Antonello Villa; Alessandro Corbelli; Stefano Fais; Giorgio Parmiani; Licia Rivoltini

Human tumors constitutively release endosome-derived microvesicles, transporting a broad array of biologically active molecules with potential modulatory effects on different immune cells. Here, we report the first evidence that tumor-released microvesicles alter myeloid cell function by impairing monocyte differentiation into dendritic cells and promoting the generation of a myeloid immunosuppressive cell subset. CD14+ monocytes isolated from healthy donors and differentiated with interleukin (IL)-4 and granulocyte macrophage colony-stimulating factor in the presence of tumor-derived microvesicles turned into HLA-DR(-/low) cells, retaining CD14 expression and failing to up-regulate costimulatory molecules, such as CD80 and CD86. These phenotypic changes were paralleled by a significant release of different cytokines, including IL-6, tumor necrosis factor-alpha, and transforming growth factor-beta (TGF-beta), and a dose-dependent suppressive activity on activated T-cell-proliferation and cytolytic functions, which could be reversed by anti-TGF-beta-neutralizing antibodies. Microvesicles isolated from plasma of advanced melanoma patients, but not from healthy donors, mediated comparable effects on CD14+ monocytes, skewing their differentiation toward CD14+HLA-DR-/low cells with TGF-beta-mediated suppressive activity on T-cell-functions. Interestingly, a subset of TGF-beta-secreting CD14+HLA-DR- cells mediating suppressive activity on T lymphocytes was found to be significantly expanded in peripheral blood of melanoma patients compared with healthy donors. These data suggest the development in cancer patients of an immunosuppressive circuit by which tumors promote the generation of suppressive myeloid cells through the release of circulating microvesicles and without the need for cell-to-cell contact. Therapeutic interventions on the crucial steps of this pathway may contribute to restore tumor/immune system interactions favoring T-cell-mediated control of tumor growth in cancer patients.


Nature Reviews Clinical Oncology | 2014

Therapeutic vaccines for cancer: an overview of clinical trials

Ignacio Melero; Gustav Gaudernack; Winald R. Gerritsen; Christoph Huber; Giorgio Parmiani; Suzy Scholl; Nicholas Thatcher; John Wagstaff; Christoph Zielinski; Ian Faulkner; Håkan Mellstedt

The therapeutic potential of host-specific and tumour-specific immune responses is well recognized and, after many years, active immunotherapies directed at inducing or augmenting these responses are entering clinical practice. Antitumour immunization is a complex, multi-component task, and the optimal combinations of antigens, adjuvants, delivery vehicles and routes of administration are not yet identified. Active immunotherapy must also address the immunosuppressive and tolerogenic mechanisms deployed by tumours. This Review provides an overview of new results from clinical studies of therapeutic cancer vaccines directed against tumour-associated antigens and discusses their implications for the use of active immunotherapy.

Collaboration


Dive into the Giorgio Parmiani's collaboration.

Top Co-Authors

Avatar

Licia Rivoltini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario P. Colombo

European Institute of Oncology

View shared research outputs
Top Co-Authors

Avatar

Cristina Maccalli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Roberta Mortarini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorenzo Pilla

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Marialuisa Sensi

Basel Institute for Immunology

View shared research outputs
Researchain Logo
Decentralizing Knowledge