Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Rovelli is active.

Publication


Featured researches published by Giorgio Rovelli.


The EMBO Journal | 2001

Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function

Thierry Galvez; Béatrice Duthey; Julie Kniazeff; Jaroslav Blahos; Giorgio Rovelli; Bernhard Bettler; Laurent Prézeau; Jean-Philippe Pin

Recent studies on G‐protein‐coupled receptors revealed that they can dimerize. However, the role of each subunit in the activation process remains unclear. The γ‐amino‐n‐butyric acid type B (GABAB) receptor is comprised of two subunits: GB1 and GB2. Both consist of an extracellular domain (ECD) and a heptahelical domain composed of seven transmembrane α‐helices, loops and the C‐terminus (HD). Whereas GB1 ECD plays a critical role in ligand binding, GB2 is required not only to target GB1 subunit to the cell surface but also for receptor activation. Here, by analysing chimeric GB subunits, we show that only GB2 HD contains the determinants required for G‐protein signalling. However, the HD of GB1 improves coupling efficacy. Conversely, although GB1 ECD is sufficient to bind GABAB ligands, the ECD of GB2 increases the agonist affinity on GB1, and is necessary for agonist activation of the receptor. These data indicate that multiple allosteric interactions between the two subunits are required for wild‐type functioning of the GABAB receptor and highlight further the importance of the dimerization process in GPCR activation.


Human Molecular Genetics | 2011

LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice

Martin C. Herzig; Carine Kolly; Elke Persohn; Diethilde Theil; Tatjana Schweizer; Thomas Hafner; Christine Stemmelen; Thomas J. Troxler; Peter Schmid; Simone Danner; Christian Schnell; Matthias Mueller; Bernd Kinzel; Armelle Grevot; Federico Bolognani; Martina Stirn; Rainer Kuhn; Klemens Kaupmann; P. Herman van der Putten; Giorgio Rovelli; Derya R. Shimshek

Mutations in leucine-rich repeat kinase 2 (LRRK2) cause late-onset Parkinsons disease (PD), but the underlying pathophysiological mechanisms and the normal function of this large multidomain protein remain speculative. To address the role of this protein in vivo, we generated three different LRRK2 mutant mouse lines. Mice completely lacking the LRRK2 protein (knock-out, KO) showed an early-onset (age 6 weeks) marked increase in number and size of secondary lysosomes in kidney proximal tubule cells and lamellar bodies in lung type II cells. Mice expressing a LRRK2 kinase-dead (KD) mutant from the endogenous locus displayed similar early-onset pathophysiological changes in kidney but not lung. KD mutants had dramatically reduced full-length LRRK2 protein levels in the kidney and this genetic effect was mimicked pharmacologically in wild-type mice treated with a LRRK2-selective kinase inhibitor. Knock-in (KI) mice expressing the G2019S PD-associated mutation that increases LRRK2 kinase activity showed none of the LRRK2 protein level and histopathological changes observed in KD and KO mice. The autophagy marker LC3 remained unchanged but kidney mTOR and TCS2 protein levels decreased in KD and increased in KO and KI mice. Unexpectedly, KO and KI mice suffered from diastolic hypertension opposed to normal blood pressure in KD mice. Our findings demonstrate a role for LRRK2 in kidney and lung physiology and further show that LRRK2 kinase function affects LRRK2 protein steady-state levels thereby altering putative scaffold/GTPase activity. These novel aspects of peripheral LRRK2 biology critically impact ongoing attempts to develop LRRK2 selective kinase inhibitors as therapeutics for PD.


Nature Cell Biology | 2006

SPPL2a and SPPL2b promote intramembrane proteolysis of TNFα in activated dendritic cells to trigger IL-12 production

Elena Friedmann; Ehud Hauben; Kerstin Maylandt; Simone Schleeger; Sarah Vreugde; Stefan F. Lichtenthaler; Peer-Hendrik Kuhn; Daniela Stauffer; Giorgio Rovelli; Bruno Martoglio

Homologues of signal peptide peptidase (SPPLs) are putative aspartic proteases that may catalyse regulated intramembrane proteolysis of type II membrane-anchored signalling factors. Here, we show that four human SPPLs are each sorted to a different compartment of the secretory pathway. We demonstrate that SPPL2a and SPPL2b, which are sorted to endosomes and the plasma membrane, respectively, are functional proteases that catalyse intramembrane cleavage of tumour necrosis factor alpha (TNFα). The two proteases promoted the release of the TNFα intracellular domain, which in turn triggers expression of the pro-inflammatory cytokine interleukin-12 by activated human dendritic cells. Our study reveals a critical function for SPPL2a and SPPL2b in the regulation of innate and adaptive immunity.


Cellular Signalling | 2010

Leucine-rich repeat kinase 2 induces α-synuclein expression via the extracellular signal-regulated kinase pathway

Iria Carballo-Carbajal; Susanne Weber-Endress; Giorgio Rovelli; Diane Chan; Benjamin Wolozin; Christian L. Klein; Nadja Patenge; Thomas Gasser; Philipp J. Kahle

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent cause of autosomal-dominant Parkinsons disease (PD). The second known autosomal-dominant PD gene (SNCA) encodes alpha-synuclein, which is deposited in Lewy bodies, the neuropathological hallmark of PD. LRRK2 contains a kinase domain with homology to mitogen-activated protein kinase kinase kinases (MAPKKKs) and its activity has been suggested to be a key factor in LRRK2-associated PD. Here we investigated the role of LRRK2 in signal transduction pathways to identify putative PD-relevant downstream targets. Over-expression of wild-type [wt]LRRK2 in human embryonic kidney HEK293 cells selectively activated the extracellular signal-regulated kinase (ERK) module. PD-associated mutants G2019S and R1441C, but not kinase-dead LRRK2, induced ERK phosphorylation to the same extent as [wt]LRRK2, indicating that this effect is kinase-dependent. However, ERK activation by mutant R1441C and G2019S was significantly slower than that for [wt]LRRK2, despite similar levels of expression. Furthermore, induction of the ERK module by LRRK2 was associated to a small but significant induction of SNCA, which was suppressed by treatment with the selective MAPK/ERK kinase inhibitor U0126. This pathway linking the two dominant PD genes LRRK2 and SNCA may offer an interesting target for drug therapy in both familial and sporadic disease.


Journal of Neurochemistry | 2009

Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment.

Christian L. Klein; Giorgio Rovelli; Wolfdieter Springer; Christoph Schall; Thomas Gasser; Philipp J. Kahle

Mutations in the gene encoding leucine‐rich repeat kinase 2 (LRRK2) are the most common cause of autosomal‐dominant familial and late‐onset sporadic Parkinson’s disease (PD). LRRK2 is a large multi‐domain protein featuring a GTP‐binding C‐terminal of Ras of complex proteins (ROC) (ROCO) domain combination unique for the ROCO protein family, directly followed by a kinase domain. Dimerization is a well‐established phenomenon among protein kinases. Here, we confirm LRRK2 self‐interaction, and provide evidence for general homo‐ and heterodimerization potential among the ROCO kinase family (LRRK2, LRRK1, and death‐associated protein kinase 1). The ROCO domain was critically, though not exclusively involved in dimerization, as a LRRK2 deletion mutant lacking the ROCO domain retained dimeric properties. GTP binding did not appear to influence ROCOLRRK2 self‐interaction. Interestingly, ROCOLRRK2 fragments exerted an inhibitory effect on both wild‐type and the elevated G2019S LRRK2 autophosphorylation activity. Insertion of PD mutations into ROCOLRRK2 reduced self‐interaction and led to a reduction of LRRK2 kinase inhibition. Collectively, these results suggest a functional link between ROCO interactions and kinase activity of wild‐type and mutant LRRK2. Importantly, our finding of ROCOLRRK2 fragment‐mediated LRRK2 kinase inhibition offers a novel lead for drug design and thus might have important implications for new therapeutic avenues in PD.


Neuropharmacology | 2003

Part I: parkin-associated proteins and Parkinson's disease.

Kumlesh K. Dev; Herman van der Putten; Bernd Sommer; Giorgio Rovelli

Parkin is an E3 ligase that plays an important role in the ubiquitin/proteosome pathway responsible for protein degradation events. Mutations in parkin result in a loss-of-function and lead to Parkinsons disease, a progressive neurological disorder of movement. Presumably, this occurs due to the toxic build-up of proteins that are no longer effectively cleared/degraded by the parkin-dependent ubiqutin/proteosome pathway. To date, three types of proteins have been shown to interact with parkin. Firstly, the E2 ubiquitin conjugating proteins called UbcH7 and UbcH8 interact with parkin. Secondly, putative substrates interacting with parkin include a synaptic vesicle associated GTPase named CDCrel-1; a G protein-coupled receptor named Pael; a novel from of alpha-synuclein; and an alpha-synuclein interacting protein synphilin-1. Thirdly and more recently, a PDZ domain containing scaffolding protein CASK/Lin2 has been shown to interact with the PDZ binding motif of parkin. A network of PDZ-interacting proteins has potential to form a complex web of molecules that surround parkin and regulate its subcellular localisation and function.


Gene | 1999

PROTEIN ISOASPARTYL METHYLTRANSFERASE PROTECTS FROM BAX-INDUCED APOPTOSIS

Karen Huebscher; Janet Lee; Giorgio Rovelli; Beat Ludin; Andrew Matus; Daniela Stauffer; Peter Fürst

Protein L-isoaspartyl methyltransferase (Pimt) is a highly conserved enzyme utilising S-adenosylmethionine (AdoMet) to methylate aspartate residues of proteins damaged by age-related isomerisation and deamidation. We have been particularly interested in this enzyme since addition of the compound CGP3466 to primary rat astroglia cell cultures resulted in an upregulation of Pimt at the mRNA level, as shown here by semi-quantitative RT-PCR. CGP3466 is a compound related to the anti-Parkinsons drug R-(-)-deprenyl, which has been shown to protect from neural apoptosis induced by trophic factor withdrawal [Tatton et al., 1994. J. Neurochem. 63, 1572]. The pro-apoptotic gene Bax is required in the cascade of events following withdrawal [Deckwerth et al., 1996. Neuron 17, 401]. We therefore investigated whether Pimt overexpression was able to affect Bax-induced apoptosis in primary mouse cortical neurons. Our results show that Pimt is indeed able to protect from Bax-induced apoptosis. Furthermore, this activity is not restricted to brain-specific cell types, since the same effect is also demonstrated in COS1 cells. In addition, mutational analysis suggests that the protective effect is dependent on the adenosine methionine-binding motif, which is well conserved in protein methyltransferases, and that a mutation destroying this motif crucially affects cytoskeletal structures of the cell.


Journal of Molecular Neuroscience | 2000

Neurotrophin dependence domain

Shahrooz Rabizadeh; Xin Ye; Sabina Sperandio; James J. L. Wang; H. Michael Ellerby; Christopher C. Giza; Rebecca L. Andrusiak; Harald Frankowski; Yifah Yaron; Nicole Moayeri; Giorgio Rovelli; Christopher J. Evans; Larry L. Butcher; Garry P. Nolan; Nuria Assa-Munt; Dale E. Bredesen

The mechanisms underlying neurotrophin dependence, and cellular dependent states in general, are unknown. We show that a 29 amino acid region in the intracellular domain of the common neurotrophin receptor, p75NTR, is required for the mediation of apoptosis by p75NTR. Furthermore, contrary to results obtained with Fas, monomeric p75NTR is required for apoptosis induction, whereas multimerization inhibits the pro-apoptotic effect. Within the 29-residue domain required for apoptosis induction by p75NTR, a 14-residue region is sufficient as a peptide inducer of apoptosis. This 14-residue peptide requires the positively charged carboxyterminal residues for its effect on cell death, and these same residues are required by the full-length p75NTR. These studies define a novel type of domain that mediates neurotrophin dependence, and suggest that other cellular dependent states may be mediated by proteins displaying similar domains.


Gene | 1989

Synthesis of glia-derived nexin in yeast.

Juerg Sommer; Bernd Meyhack; Giorgio Rovelli; Rolf Buergi; Denis Monard

Glia-derived nexin (GDN) is a 43-kDa glycoprotein isolated from rat glioma cell cultures. It promotes neurite extension in cultures of neuroblastoma cells and chick sympathetic neurons. Moreover, GDN is a potent serine protease inhibitor (serpin), belonging to the family of protease nexins. We report here the expression of rat GDN in the Saccharomyces cerevisiae strain GRF18 under the control of the PHO5 promoter. We describe the purification of more than 6 mg total GDN from the cellular extract of 1 liter of yeast culture. The amino acid composition and the sequence of CNBr-fragments of the recombinant protein correlate with the values deduced from the rat GDN cDNA. We provide evidence that the recombinant GDN has exactly the same properties as the glioma-derived protein with respect to its protease-inhibitory activity and its ability to promote the extension of neurites from neuroblastoma cells. The large amounts of recombinant protein obtained from this expression system will allow further biochemical and physiological analysis of GDN and of the serpins in general.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of novel indolinone-based, potent, selective and brain penetrant inhibitors of LRRK2

Thomas J. Troxler; Paulette Greenidge; Kaspar Zimmermann; Sandrine Desrayaud; Peter Drückes; Tatjana Schweizer; Daniela Stauffer; Giorgio Rovelli; Derya R. Shimshek

Mutations in leucine-rich repeat kinase-2 (LRRK2) are the most common genetic cause of Parkinsons disease (PD). The most frequent kinase-enhancing mutation is the G2019S residing in the kinase activation domain. This opens up a promising therapeutic avenue for drug discovery targeting the kinase activity of LRRK2 in PD. Several LRRK2 inhibitors have been reported to date. Here, we report a selective, brain penetrant LRRK2 inhibitor and demonstrate by a competition pulldown assay in vivo target engagement in mice.

Collaboration


Dive into the Giorgio Rovelli's collaboration.

Researchain Logo
Decentralizing Knowledge