Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgio Schirò is active.

Publication


Featured researches published by Giorgio Schirò.


Nature Communications | 2015

Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins

Giorgio Schirò; Yann Fichou; François-Xavier Gallat; Kathleen Wood; Frank Gabel; Martine Moulin; Michael Härtlein; Matthias Heyden; Jacques-Philippe Colletier; A. Orecchini; Alessandro Paciaroni; Joachim Wuttke; Douglas J. Tobias; Martin Weik

Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.


Nature Communications | 2015

Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser.

Matteo Levantino; Giorgio Schirò; Henrik T. Lemke; Grazia Cottone; J. M. Glownia; Diling Zhu; Mathieu Chollet; Hyotcherl Ihee; Antonio Cupane; Marco Cammarata

Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.


Journal of Chemical Physics | 2006

Impulsive solvent heating probed by picosecond x-ray diffraction

Marco Cammarata; M. Lorenc; Tae Kyu Kim; Jonghoon Lee; Qingyu Kong; E. Pontecorvo; M. Lo Russo; Giorgio Schirò; Antonio Cupane; Michael Wulff; Hyotcherl Ihee

The time-resolved diffraction signal from a laser-excited solution has three principal components: the solute-only term, the solute-solvent cross term, and the solvent-only term. The last term is very sensitive to the thermodynamic state of the bulk solvent, which may change during a chemical reaction due to energy transfer from light-absorbing solute molecules to the surrounding solvent molecules and the following relaxation to equilibrium with the environment around the scattering volume. The volume expansion coefficient alpha for a liquid is typically approximately 1 x 10(-3) K(-1), which is about 1000 times greater than for a solid. Hence solvent scattering is a very sensitive on-line thermometer. The decomposition of the scattered x-ray signal has so far been aided by molecular dynamics (MD) simulations, a method capable of simulating the solvent response as well as the solute term and solute/solvent cross terms for the data analysis. Here we present an experimental procedure, applicable to most hydrogen containing solvents, that directly measures the solvent response to a transient temperature rise. The overtone modes of OH stretching and CH3 asymmetric stretching in liquid methanol were excited by near-infrared femtosecond laser pulses at 1.5 and 1.7 microm and the ensuing hydrodynamics, induced by the transfer of heat from a subset of excited CH3OH* to the bulk and the subsequent thermal expansion, were probed by 100 ps x-ray pulses from a synchrotron. The time-resolved data allowed us to extract two key differentials: the change in the solvent diffraction from a temperature change at constant density, seen at a very short time delay approximately 100 ps, and a term from a change in density at constant temperature. The latter term becomes relevant at later times approximately 1 mus when the bulk of liquid expands to accommodate its new temperature at ambient pressure. These two terms are the principal building blocks in the hydrodynamic equation of state, and they are needed in a self-consistent reconstruction of the solvent response during a chemical reaction. We compare the experimental solvent terms with those from MD simulations. The use of experimentally determined solvent differentials greatly improved the quality of global fits when applied to the time-resolved data for C2H4I2 dissolved in methanol.


Journal of the American Chemical Society | 2010

Direct Evidence of the Amino Acid Side Chain and Backbone Contributions to Protein Anharmonicity

Giorgio Schirò; Chiara Caronna; Francesca Natali; Antonio Cupane

Elastic incoherent neutron scattering has been used to study the temperature dependence of the mean-square displacements of nonexchangeable hydrogen atoms in powders of a series of homomeric polypeptides (polyglycine, polyalanine, polyphenylalanine and polyisoleucine) in comparison with myoglobin at the same hydration level (h = 0.2). The aim of the work was to measure the dynamic behavior of different amino acid residues separately and assess the contribution of each type of side chain to the anharmonic dynamics of proteins. The results provide direct experimental evidence that the first anharmonic activation, at approximately 150 K, is largely due to methyl group rotations entering the time window of the spectrometer used; however, contributions on the order of 10-20% from the motions of other groups (e.g., the phenolic ring and the methylene groups) are present. Our data also indicate that the dynamical transition occurring at approximately 230 K can be attributed, at least at the hydration level investigated, mainly to motions involving backbone fluctuations.


Neutron News | 2008

IN13 Backscattering Spectrometer at ILL: Looking for Motions in Biological Macromolecules and Organisms

Natali Francesca; J. Peters; D. Russo; Stefano Barbieri; C. Chiapponi; Antonio Cupane; Antonio Deriu; M.T. Di Bari; E. Farhi; Yuri Gerelli; P. Mariani; A. Paciaroni; C. Rivasseau; Giorgio Schirò; Fabio Sonvico

In 1998, three partner groups (the French institutions Institut de Biologie Structurale and the Léon Brillouin Laboratory and the Italian Istituto Nazionale per la Fisica della Materia, now merged with the Consiglio Nazionale delle Ricerche, INFM-CNR) applied to operate the thermal backscattering spectrometer IN13, at the Institut Laue Langevin, as a French-Italian Collaborative Research Group (CRG). The plan was to have access to a dedicated spectrometer in order to explore how far neutron scattering could contribute to the understanding of dynamics in biological macromolecules: how “flexible” must be a biological object to perform its function?


Proceedings of the National Academy of Sciences of the United States of America | 2012

The Monod-Wyman-Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin.

Matteo Levantino; Alessandro Spilotros; Marco Cammarata; Giorgio Schirò; Chiara Ardiccioni; Beatrice Vallone; Maurizio Brunori; Antonio Cupane

The acknowledged success of the Monod-Wyman-Changeux (MWC) allosteric model stems from its efficacy in accounting for the functional behavior of many complex proteins starting with hemoglobin (the paradigmatic case) and extending to channels and receptors. The kinetic aspects of the allosteric model, however, have been often neglected, with the exception of hemoglobin and a few other proteins where conformational relaxations can be triggered by a short and intense laser pulse, and monitored by time-resolved optical spectroscopy. Only recently the application of time-resolved wide-angle X-ray scattering (TR-WAXS), a direct structurally sensitive technique, unveiled the time scale of hemoglobin quaternary structural transition. In order to test the generality of the MWC kinetic model, we carried out a TR-WAXS investigation in parallel on adult human hemoglobin and on a recombinant protein (HbYQ) carrying two mutations at the active site [Leu(B10)Tyr and His(E7)Gln]. HbYQ seemed an ideal test because, although exhibiting allosteric properties, its kinetic and structural properties are different from adult human hemoglobin. The structural dynamics of HbYQ unveiled by TR-WAXS can be quantitatively accounted for by the MWC kinetic model. Interestingly, the main structural change associated with the R–T allosteric transition (i.e., the relative rotation and translation of the dimers) is approximately 10-fold slower in HbYQ, and the drop in the allosteric transition rate with ligand saturation is steeper. Our results extend the general validity of the MWC kinetic model and reveal peculiar thermodynamic properties of HbYQ. A possible structural interpretation of the characteristic kinetic behavior of HbYQ is also discussed.


Journal of Chemical Physics | 2013

Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water

Giorgio Schirò; Margarita Fomina; Antonio Cupane

In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related.


Physical Chemistry Chemical Physics | 2010

Molecular origin and hydration dependence of protein anharmonicity: an elastic neutron scattering study

Giorgio Schirò; Chiara Caronna; Francesca Natali; Antonio Cupane

Two main onsets of anharmonicity are present in protein dynamics. Neutron scattering on protein hydrated powders revealed a first onset at about 150 K and a second one at about 230 K (the so called dynamical transition). In order to assess the molecular origin of protein anharmonicity, we study different homomeric polypeptides by incoherent elastic neutron scattering, thus disentangling the contribution of different molecular groups in proteins. We show that methyl group rotations are the main contributors to the low temperature onset. Concerning the dynamical transition, we show that it also occurs in absence of side chains; however, the presence and mobility of side chains substantially increases the fluctuations amplitude without influencing the transition temperature. We also investigate the role of hydration on the anharmonic contributions. Our study shows that methyl group rotations are unaffected by hydration and confirms that the dynamical transition is suppressed in dry samples. In hydrated samples, while the pure backbone contribution does not depend on the hydration h at h > or = 0.2, in the presence of side chains the anharmonic fluctuations involved in the dynamical transition are enhanced by increasing the water content.


Journal of Physical Chemistry Letters | 2016

Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein Irisfp.

Jacques-Philippe Colletier; Michel Sliwa; François-Xavier Gallat; Michihiro Sugahara; Virginia Guillon; Giorgio Schirò; Nicolas Coquelle; Joyce Woodhouse; Laure Roux; Guillaume Gotthard; Antoine Royant; Lucas Martinez Uriarte; Cyril Ruckebusch; Yasumasa Joti; Martin Byrdin; Eiichi Mizohata; Eriko Nango; Tomoyuki Tanaka; Kensuke Tono; Makina Yabashi; Virgile Adam; Marco Cammarata; Ilme Schlichting; Dominique Bourgeois; Martin Weik

Reversibly photoswitchable fluorescent proteins find growing applications in cell biology, yet mechanistic details, in particular on the ultrafast photochemical time scale, remain unknown. We employed time-resolved pump-probe absorption spectroscopy on the reversibly photoswitchable fluorescent protein IrisFP in solution to study photoswitching from the nonfluorescent (off) to the fluorescent (on) state. Evidence is provided for the existence of several intermediate states on the pico- and microsecond time scales that are attributed to chromophore isomerization and proton transfer, respectively. Kinetic modeling favors a sequential mechanism with the existence of two excited state intermediates with lifetimes of 2 and 15 ps, the second of which controls the photoswitching quantum yield. In order to support that IrisFP is suited for time-resolved experiments aiming at a structural characterization of these ps intermediates, we used serial femtosecond crystallography at an X-ray free electron laser and solved the structure of IrisFP in its on state. Sample consumption was minimized by embedding crystals in mineral grease, in which they remain photoswitchable. Our spectroscopic and structural results pave the way for time-resolved serial femtosecond crystallography aiming at characterizing the structure of ultrafast intermediates in reversibly photoswitchable fluorescent proteins.


Structural Dynamics | 2015

Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy

Matteo Levantino; Henrik T. Lemke; Giorgio Schirò; M. Glownia; Antonio Cupane; Marco Cammarata

We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (∼70 fs) relaxation preceding a slower (∼400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

Collaboration


Dive into the Giorgio Schirò's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joyce Woodhouse

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Weik

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Francesca Natali

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugenio De La Mora

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge