Giorgio Trinchieri
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giorgio Trinchieri.
Nature Immunology | 2004
Marco Colonna; Giorgio Trinchieri; Yong-Jun Liu
Human and mouse plasmacytoid dendritic cells have been shown to correspond to a specialized cell population that produces large amounts of type I interferons in response to viruses, the so-called natural interferon–producing cells. As a result, intensive investigation is now focused on the potential functions of plasmacytoid dendritic cells in both innate and adaptive immunity. Here we review recent progress on the characterization of plasmacytoid dendritic cell origin, development, migration and function in immunity and tolerance, as well as their effect on human diseases.
Nature Reviews Immunology | 2007
Giorgio Trinchieri; Alan Sher
The mechanisms by which the recognition of Toll-like receptor (TLR) ligands leads to host immunity remain poorly defined. It is now thought that to induce an effective immune response, microorganisms must stimulate complex sets of pattern-recognition receptors, both within and outside of the TLR family. The combined activation of these different receptors can result in complementary, synergistic or antagonistic effects that modulate innate and adaptive immunity. Therefore, a complete understanding of the role of TLRs in host resistance to infection requires decoding of these multiple receptor interactions. This Review highlights recent advances in the newly emerging field of TLR cooperation and discusses their implications for the development of adjuvants and immunotherapies.
Nature Immunology | 2001
Carine Asselin-Paturel; Andre Boonstra; Marc Dalod; Isabelle Durand; Nadia Yessaad; Colette Dezutter-Dambuyant; Alain Vicari; Anne O'Garra; Christine A. Biron; Francine Brière; Giorgio Trinchieri
We show here that mouse interferon-α (IFN-α)–producing cells (mIPCs) are a unique subset of immature antigen-presenting cells (APCs) that secrete IFN-α upon stimulation with viruses. mIPCs have a plasmacytoid morphology, can be stained with an antibody to Ly6G and Ly6C (anti-Ly6G/C) and are Ly6C+B220+CD11cloCD4+; unlike other dendritic cell subsets, however, they do not express CD8α or CD11b. Although mIPCs undergo apoptosis in vitro, stimulation with viruses, IFN-α or CpG oligonucleotides enhanced their survival and T cell stimulatory activity. In vivo, mIPCs were the main producers of IFN-α in cytomegalovirus-infected mice, as depletion of Ly6G+/C+ cells abrogated IFN-α production. mIPCs produced interleukin 12 (IL-12) in response to viruses and CpG oligodeoxynucleotides, but not bacterial products. Although different pathogens can selectively engage various APC subsets for IL-12 production, IFN-α production is restricted to mIPCs response to viral infection.
Journal of Experimental Medicine | 2002
Franca Gerosa; Barbara Baldani-Guerra; Carla Nisii; Viviana Marchesini; Giuseppe Carra; Giorgio Trinchieri
We analyzed the interaction between human peripheral blood natural killer (NK) cells and monocyte-derived immature dendritic cells (DC). Fresh NK cells were activated, as indicated by the induced expression of the CD69 antigen, and their cytolytic activity was strongly augmented by contact with lipopolysaccharide (LPS)-treated mature DC, or with immature DC in the presence of the maturation stimuli LPS, Mycobacterium tuberculosis or interferon (IFN)-α. Reciprocally, fresh NK cells cultured with immature DC in the presence of the maturation stimuli strongly enhanced DC maturation and interleukin (IL)-12 production. IL-2–activated NK cells directly induced maturation of DC and enhanced their ability to stimulate allogeneic naive CD4+ T cells. The effects of NK cells were cell contact dependent, although the secretion of IFN-γ and TNF also contributed to DC maturation. Within peripheral blood lymphocytes the reciprocal activating interaction with DC was restricted to NK cells, because the other lymphocyte subsets were neither induced to express CD69, nor induced to mature in contact with DC. These data demonstrated for the first time a bidirectional cross talk between NK cells and DC, in which NK cells activated by IL-2 or by mature DC induce DC maturation.
Immunity | 2003
Giorgio Trinchieri; Stefan Pflanz; Robert A. Kastelein
Originally the only known heterodimeric cytokine, IL-12 is now part of a family of five cytokines and shares important functions in the regulation of both innate and adaptive immunity with two of them, IL-23 and IL-27. Although initially these three cytokines were considered to have largely overlapping immunological functions, more recent studies, including two articles in this issue of Immunity (Hamano et al., 2003; Villarino et al., 2003), indicate that they mediate complex and well-differentiated functions.
Nature Immunology | 2006
Jordi Ochando; Chiho Homma; Yu Yang; Andrés Hidalgo; Alexandre Garin; Frank Tacke; Veronique Angeli; Yansui Li; Peter Boros; Yaozhong Ding; Rolf Jessberger; Giorgio Trinchieri; Sergio A. Lira; Gwendalyn J. Randolph; Jonathan S. Bromberg
The induction of alloantigen-specific unresponsiveness remains an elusive goal in organ transplantation. Here we identify plasmacytoid dendritic cells (pDCs) as phagocytic antigen-presenting cells essential for tolerance to vascularized cardiac allografts. Tolerizing pDCs acquired alloantigen in the allograft and then moved through the blood to home to peripheral lymph nodes. In the lymph node, alloantigen-presenting pDCs induced the generation of CCR4+CD4+CD25+Foxp3+ regulatory T cells (Treg cells). Depletion of pDCs or prevention of pDC lymph node homing inhibited peripheral Treg cell development and tolerance induction, whereas adoptive transfer of tolerized pDCs induced Treg cell development and prolonged graft survival. Thus, alloantigen-presenting pDCs home to the lymph nodes in tolerogenic conditions, where they mediate alloantigen-specific Treg cell development and allograft tolerance.
Cytokine & Growth Factor Reviews | 2002
Mario P. Colombo; Giorgio Trinchieri
Interleukin-12 (IL-12) has an essential role in the interaction between the innate and adaptive arms of immunity by regulating inflammatory responses, innate resistance to infection, and adaptive immunity. Endogenous IL-12 is required for resistance to many pathogens and to transplantable and chemically induced tumors. In experimental tumor models, recombinant IL-12 treatment has a dramatic anti-tumor effect on transplantable tumors, on chemically induced tumors, and in tumors arising spontaneously in genetically modified mice. IL-12 utilizes effector mechanisms of both innate resistance and adaptive immunity to mediate anti-tumor resistance. IFN-gamma and a cascade of other secondary and tertiary pro-inflammatory cytokines induced by IL-12 have a direct toxic effect on the tumor cells or may activate potent anti-angiogenic mechanisms. The stimulating activity of IL-12 on antigen-specific immunity relies mostly on its ability to determine or augment Th1 and cytotoxic T lymphocyte responses. Because of this ability, IL-12 has a potent adjuvant activity in cancer and other vaccines. The promising data obtained in the pre-clinical models of anti-tumor immunotherapy have raised much hope that IL-12 could be a powerful therapeutic agent against cancer. However, excessive clinical toxicity and modest clinical response observed in the clinical trials point to the necessity to plan protocols that minimize toxicity without affecting the anti-tumor effect of IL-12.
Nature | 2012
Sergei I. Grivennikov; Kepeng Wang; Daniel Mucida; C. Andrew Stewart; Bernd Schnabl; Dominik Jauch; Koji Taniguchi; Guann Yi Yu; Christoph H. Österreicher; Kenneth E. Hung; Christian Datz; Ying Feng; Eric R. Fearon; Mohamed Oukka; Lino Tessarollo; Vincenzo Coppola; Felix Yarovinsky; Hilde Cheroutre; Lars Eckmann; Giorgio Trinchieri; Michael Karin
Approximately 2% of colorectal cancer is linked to pre-existing inflammation known as colitis-associated cancer, but most develops in patients without underlying inflammatory bowel disease. Colorectal cancer often follows a genetic pathway whereby loss of the adenomatous polyposis coli (APC) tumour suppressor and activation of β-catenin are followed by mutations in K-Ras, PIK3CA and TP53, as the tumour emerges and progresses. Curiously, however, ‘inflammatory signature’ genes characteristic of colitis-associated cancer are also upregulated in colorectal cancer. Further, like most solid tumours, colorectal cancer exhibits immune/inflammatory infiltrates, referred to as ‘tumour-elicited inflammation’. Although infiltrating CD4+ TH1 cells and CD8+ cytotoxic T cells constitute a positive prognostic sign in colorectal cancer, myeloid cells and T-helper interleukin (IL)-17-producing (TH17) cells promote tumorigenesis, and a ‘TH17 expression signature’ in stage I/II colorectal cancer is associated with a drastic decrease in disease-free survival. Despite its pathogenic importance, the mechanisms responsible for the appearance of tumour-elicited inflammation are poorly understood. Many epithelial cancers develop proximally to microbial communities, which are physically separated from immune cells by an epithelial barrier. We investigated mechanisms responsible for tumour-elicited inflammation in a mouse model of colorectal tumorigenesis, which, like human colorectal cancer, exhibits upregulation of IL-23 and IL-17. Here we show that IL-23 signalling promotes tumour growth and progression, and development of a tumoural IL-17 response. IL-23 is mainly produced by tumour-associated myeloid cells that are likely to be activated by microbial products, which penetrate the tumours but not adjacent tissue. Both early and late colorectal neoplasms exhibit defective expression of several barrier proteins. We propose that barrier deterioration induced by colorectal-cancer-initiating genetic lesions results in adenoma invasion by microbial products that trigger tumour-elicited inflammation, which in turn drives tumour growth.
Cancer Research | 2005
Cristiana Guiducci; Alain Vicari; Sabina Sangaletti; Giorgio Trinchieri; Mario P. Colombo
A hostile tumor microenvironment interferes with the development and function of the adaptive immune response. Here we report the mechanisms by which large numbers of tumor-infiltrating macrophages and dendritic cells (DC) can be redirected to become potent effectors and activators of the innate and adaptive immunity, respectively. We use adenoviral delivery of the CCL16 chemokine to promote accumulation of macrophages and DC at the site of preestablished tumor nodules, combined with the Toll-like receptor 9 ligand CpG and with anti-interleukin-10 receptor antibody. CpG plus anti-interleukin-10 receptor antibody promptly switched infiltrating macrophages infiltrate from M2 to M1 and triggered innate response debulking large tumors within 16 hours. Tumor-infiltrating DC matured and migrated in parallel with the onset of the innate response, allowing the triggering of adaptive immunity before the diffuse hemorrhagic necrosis halted the communication between tumor and draining lymph nodes. Treatment of B6>CXB6 chimeras implanted with BALB/c tumors with the above combination induced an efficient innate response but not CTL-mediated tumor lysis. In these mice, tumor rejection did not exceed 25%, similarly to that observed in CCR7-null mice that have DC unable to prime an adaptive response. The requirement of CD4 help was shown in CD40-KO, as well as in mice depleted of CD4 T cells, during the priming rather than the effector phase. Our data describe the critical requirements for the immunologic rejection of large tumors: a hemorrhagic necrosis initiated by activated M1 macrophages and a concomitant DC migration to draining lymph nodes for subsequent CTL priming and clearing of any tumor remnants.
Journal of Immunology | 2005
Franca Gerosa; Andrea Gobbi; Penelope Zorzi; Stéphanie Burg; Francine Brière; Giuseppe Carra; Giorgio Trinchieri
A reciprocal activating interaction between NK cells and dendritic cells (DC) has been suggested to play a role in the functional regulation of these cells in immunity, but it has been studied only using in vitro generated bone marrow- or monocyte-derived DC. We report that human peripheral blood plasmacytoid DC (pDC) and myeloid DC are necessary to induce NK cell function depending on the type of microbial stimulus. pDC and myeloid DC are required for strongly increased NK cytolytic activity and CD69 expression, in response to inactivated influenza virus or CpG-containing oligonucleotides and poly(I:C), respectively. Secreted type I IFN is required and sufficient for the augmentation of NK cell cytolytic activity in the coculture with pDC or myeloid DC, whereas CD69 expression is dependent on both type I IFN and TNF. In addition, in response to poly(I:C), myeloid DC induce NK cells to produce IFN-γ through a mechanism dependent on both IL-12 secretion and cell contact between NK cells and myeloid DC, but independent of type I IFN. IL-2-activated NK cells have little to no cytolytic activity for immature myeloid DC and pDC, but are able to induce maturation of these cells. Moreover, IL-2-activated NK cells induce, in the presence of a suboptimal concentration of CpG-containing oligonucleotides, a strong IFN-α and TNF production. These data suggest that the reciprocal functional interaction between NK cells and either pDC or myeloid DC may play an important physiological role in the regulation of both innate resistance and adaptive immunity to infections.