Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giorgis Isaac is active.

Publication


Featured researches published by Giorgis Isaac.


Analytical Chemistry | 2015

Untargeted UPLC-MS Profiling Pipeline to Expand Tissue Metabolome Coverage: Application to Cardiovascular Disease

Panagiotis A. Vorkas; Giorgis Isaac; Muzaffar A. Anwar; Alun H. Davies; Elizabeth J. Want; Jeremy K. Nicholson; Elaine Holmes

Metabolic profiling studies aim to achieve broad metabolome coverage in specific biological samples. However, wide metabolome coverage has proven difficult to achieve, mostly because of the diverse physicochemical properties of small molecules, obligating analysts to seek multiplatform and multimethod approaches. Challenges are even greater when it comes to applications to tissue samples, where tissue lysis and metabolite extraction can induce significant systematic variation in composition. We have developed a pipeline for obtaining the aqueous and organic compounds from diseased arterial tissue using two consecutive extractions, followed by a different untargeted UPLC-MS analysis method for each extract. Methods were rationally chosen and optimized to address the different physicochemical properties of each extract: hydrophilic interaction liquid chromatography (HILIC) for the aqueous extract and reversed-phase chromatography for the organic. This pipeline can be generic for tissue analysis as demonstrated by applications to different tissue types. The experimental setup and fast turnaround time of the two methods contributed toward obtaining highly reproducible features with exceptional chromatographic performance (CV % < 0.5%), making this pipeline suitable for metabolic profiling applications. We structurally assigned 226 metabolites from a range of chemical classes (e.g., carnitines, α-amino acids, purines, pyrimidines, phospholipids, sphingolipids, free fatty acids, and glycerolipids) which were mapped to their corresponding pathways, biological functions and known disease mechanisms. The combination of the two untargeted UPLC-MS methods showed high metabolite complementarity. We demonstrate the application of this pipeline to cardiovascular disease, where we show that the analyzed diseased groups (n = 120) of arterial tissue could be distinguished based on their metabolic profiles.


Journal of Lipid Research | 2014

Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection

Carola W. N. Damen; Giorgis Isaac; James I. Langridge; Thomas Hankemeier; Rob J. Vreeken

An ultraperformance LC (UPLC) method for the separation of different lipid molecular species and lipid isomers using a stationary phase incorporating charged surface hybrid (CSH) technology is described. The resulting enhanced separation possibilities of the method are demonstrated using standards and human plasma extracts. Lipids were extracted from human plasma samples with the Bligh and Dyer method. Separation of lipids was achieved on a 100 × 2.1 mm inner diameter CSH C18 column using gradient elution with aqueous-acetonitrile-isopropanol mobile phases containing 10 mM ammonium formate/0.1% formic acid buffers at a flow rate of 0.4 ml/min. A UPLC run time of 20 min was routinely used, and a shorter method with a 10 min run time is also described. The method shows extremely stable retention times when human plasma extracts and a variety of biofluids or tissues are analyzed [intra-assay relative standard deviation (RSD) <0.385% and <0.451% for 20 and 10 min gradients, respectively (n = 5); interassay RSD <0.673% and <0.763% for 20 and 10 min gradients, respectively (n = 30)]. The UPLC system was coupled to a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer, equipped with a traveling wave ion-mobility cell. Besides demonstrating the separation for different lipids using the chromatographic method, we demonstrate the use of the ion-mobility MS platform for the structural elucidation of lipids. The method can now be used to elucidate structures of a wide variety of lipids in biological samples of different matrices.


Journal of Proteome Research | 2015

Metabolic Phenotyping of Atherosclerotic Plaques Reveals Latent Associations between Free Cholesterol and Ceramide Metabolism in Atherogenesis

Panagiotis A. Vorkas; Joseph Shalhoub; Giorgis Isaac; Elizabeth J. Want; Jeremy K. Nicholson; Elaine Holmes; Alun H. Davies

Current optimum medical treatments have had limited success in the primary prevention of cardiovascular events, underscoring the need for new pharmaceutical targets and enhanced understanding of mechanistic metabolic dysregulation. Here, we use a combination of novel metabolic profiling methodologies, based on ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) followed by chemometric modeling, data integration, and pathway mapping, to create a systems-level metabolic atlas of atherogenesis. We apply this workflow to compare arterial tissue incorporating plaque lesions to intimal thickening tissue (immediate preplaque stage). We find changes in several metabolite species consistent with well-established pathways in atherosclerosis, such as the cholesterol, purine, pyrimidine, and ceramide pathways. We then illustrate differential levels of previously unassociated lipids to atherogenesis, namely, phosphatidylethanolamine-ceramides (t-test p-values: 3.8 × 10(-6) to 9.8 × 10(-12)). Most importantly, these molecules appear to be interfacing two pathways recognized for their involvement in atherosclerosis: ceramide and cholesterol. Furthermore, we show that β-oxidation intermediates (i.e., acylcarnitines) manifest a pattern indicating truncation of the process and overall dysregulation of fatty acid metabolism and mitochondrial dysfunction. We develop a metabolic framework that offers the ability to map significant statistical associations between detected biomarkers. These dysregulated molecules and consequent pathway modulations may provide novel targets for pharmacotherapeutic intervention.


Journal of Chromatography B | 2014

Ultra high resolution SFC–MS as a high throughput platform for metabolic phenotyping: Application to metabolic profiling of rat and dog bile☆

Michael D. Jones; Paul Rainville; Giorgis Isaac; Ian D. Wilson; Norman W. Smith; Robert S. Plumb

Ultra high resolution SFC-MS (on sub-2μm particles) coupled to mass spectrometry has been evaluated for the metabolic profiling of rat and dog bile. The selectivity of the SFC separation differed from that seen in previous reversed-phase UPLC-MS studies on bile, with the order of elution for analytes such as e.g., the bile acids showing many differences. The chromatography system showed excellent stability, reproducibility and robustness with relative standard deviation of less than 1% for retention time obtained over the course of the analysis. SFC showed excellent chromatographic performance with chromatographic peak widths in the order of 3s at the base of the peak. The use of supercritical fluid carbon dioxide as a mobile phase solvent also reduced the overall consumption of organic solvent by a factor of 3 and also reduced the overall analysis time by a factor of 30% compared to reversed-phase gradient LC. SFC-MS appear complementary to RPLC for the metabolic profiling of complex samples such as bile.


Journal of Chromatography B | 2015

Study of UltraHigh Performance Supercritical Fluid Chromatography to measure free fatty acids with out fatty acid ester preparation

Mehdi Ashraf-Khorassani; Giorgis Isaac; Paul Rainville; Kenneth J. Fountain; Larry T. Taylor

Most lipids are best characterized by their fatty acids which may differ in (a) chain length, (b) degree of unsaturation, (c) configuration and position of the double bonds, and (d) the presence of other functionalities. Thus, a fast, simple, and quantitative analytical technique to determine naturally occurring free fatty acids (FFA) in different samples is very important. Just as for saponified acylglycerols, the determination of FFAs has generally been carried out by high resolution gas chromatography (HRGC). The use of an open tubular capillary column coupled with a flame ionization or mass spectrometric detector provides for both high resolution and quantification of FFAs but only after conversion of all free fatty acids to fatty acid methyl esters (FAME) or pentafluorobenzyl esters. Unfortunately, volatilization of labile ester derivatives of mono- and poly-unsaturated FFAs can cause both thermal degradation and isomerization of the fatty acid during HRGC. The employment of a second generation instrument (here referred to as UltraHigh Performance Supercritical Fluid Chromatograph, UHPSFC) with high precision for modified flow and repeated back pressure adjustment in conjunction with sub-2μm various bonded silica particles (coupled with evaporative light scattering, ELSD, and mass spectrometric, MS, detection) for separation and detection of the following mixtures is described: (a) 31 free fatty acids, (b) isomeric FFAs, and (c) lipophilic materials in two real world fish oil samples. Limits of detection for FFAs via UHPSFC/MS and UHPSFC/ELSD versus detection of FAMEs via HRGC/MS are quantitatively compared.


Analytica Chimica Acta | 2014

Investigating sub-2 μm particle stationary phase supercritical fluid chromatography coupled to mass spectrometry for chemical profiling of chamomile extracts.

Michael D. Jones; Bharathi Avula; Yan-Hong Wang; Lu Lu; Jianping Zhao; Cristina Avonto; Giorgis Isaac; Larry R. Meeker; K Yu; Cristina Legido-Quigley; Norman W. Smith; Ikhlas A. Khan

Roman and German chamomile are widely used throughout the world. Chamomiles contain a wide variety of active constituents including sesquiterpene lactones. Various extraction techniques were performed on these two types of chamomile. A packed-column supercritical fluid chromatography-mass spectrometry method was designed for the identification of sesquiterpenes and other constituents from chamomile extracts with no derivatization step prior to analysis. Mass spectrometry detection was achieved by using electrospray ionization. All of the compounds of interest were separated within 15 min. The chamomile extracts were analyzed and compared for similarities and distinct differences. Multivariate statistical analysis including principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to differentiate between the chamomile samples. German chamomile samples confirmed the presence of cis- and trans-tonghaosu, chrysosplenols, apigenin diglucoside whereas Roman chamomile samples confirmed the presence of apigenin, nobilin, 1,10-epioxynobilin, and hydroxyisonobilin.


International Journal of Cardiology | 2015

Perturbations in fatty acid metabolism and apoptosis are manifested in calcific coronary artery disease: An exploratory lipidomic study.

Panagiotis A. Vorkas; Giorgis Isaac; Anders Holmgren; Elizabeth J. Want; John P. Shockcor; Elaine Holmes; Michael Y. Henein

BACKGROUND Controversy exists concerning the beneficial or harmful effects of the presence of ectopic calcification in the coronary arteries. Additionally, further elucidation of the exact pathophysiological mechanism is needed. In this study, we sought to identify metabolic markers of vascular calcification that could assist in understanding the disease, monitoring its progress and generating hypotheses describing its pathophysiology. METHODS Untargeted lipid profiling and complementary modeling strategies were employed to compare serum samples from patients with different levels of calcific coronary artery disease (CCAD) based on their calcium score (CS). Subsequently, patients were divided into three groups: no calcification (NC; CS=0; n=26), mild calcification (MC; CS:1-250; n=27) and severe (SC; CS>250; n=17). RESULTS Phosphatidylcholine levels were found to be significantly altered in the disease states (p=0.001-0.04). Specifically, 18-carbon fatty acyl chain (FAC) phosphatidylcholines were detected in lower levels in the SC group, while 20:4 FAC lipid species were detected in higher concentrations. A statistical trend was observed with phosphatidylcholine lipids in the MC group, showing the same tendency as with the SC group. We also observed several sphingomyelin signals present at lower intensities in SC when compared with NC or MC groups (p=0.000001-0.01). CONCLUSIONS This is the first lipid profiling study reported in CCAD. Our data demonstrate dysregulations of phosphatidylcholine lipid species, which suggest perturbations in fatty acid elongation/desaturation. The altered levels of the 18-carbon and 20:4 FAC lipids may be indicative of disturbed inflammation homeostasis. The marked sphingomyelin dysregulation in SC is consistent with profound apoptosis as a potential mechanism of CCAD.


Analytica Chimica Acta | 2017

Ion mobility spectrometry combined with ultra performance liquid chromatography/mass spectrometry for metabolic phenotyping of urine: Effects of column length, gradient duration and ion mobility spectrometry on metabolite detection

Paul Rainville; Ian D. Wilson; Jeremy K. Nicholson; Giorgis Isaac; Lauren Mullin; James I. Langridge; Robert S. Plumb

The need for rapid and efficient high throughput metabolic phenotyping (metabotyping) in metabolomic/metabonomic studies often requires compromises to be made between analytical speed and metabolome coverage. Here the effect of column length (150, 75 and 30 mm) and gradient duration (15, 7.5 and 3 min respectively) on the number of features detected when untargeted metabolic profiling of human urine using reversed-phase gradient ultra performance chromatography with, and without, ion mobility spectrometry, has been examined. As would be expected, reducing column length from 150 to 30 mm, and gradient duration, from 15 to 3 min, resulted in a reduction in peak capacity from 311 to 63 and a similar reduction in the number of features detected from over ca. 16,000 to ca. 6500. Under the same chromatographic conditions employing UPLC/IMS/MS to provide an additional orthogonal separation resulted in an increase in the number of MS features detected to nearly 20,000 and ca. 7500 for the 150 mm and the 30 mm columns respectively. Based on this limited study the potential of LC/IMS/MS as a tool for improving throughput and increasing metabolome coverage clearly merits further in depth study.


PLOS ONE | 2015

Comparative Metabolomic and Lipidomic Analysis of Phenotype Stratified Prostate Cells

Tanya C. Burch; Giorgis Isaac; Christiana L. Booher; Johng S. Rhim; Paul Rainville; James I. Langridge; Andrew Baker; Julius O. Nyalwidhe

Prostate cancer (PCa) is the most prevalent cancer amongst men and the second most common cause of cancer related-deaths in the USA. Prostate cancer is a heterogeneous disease ranging from indolent asymptomatic cases to very aggressive life threatening forms. The goal of this study was to identify differentially expressed metabolites and lipids in prostate cells with different tumorigenic phenotypes. We have used mass spectrometry metabolomic profiling, lipidomic profiling, bioinformatic and statistical methods to identify, quantify and characterize differentially regulated molecules in five prostate derived cell lines. We have identified potentially interesting species of different lipid subclasses including phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), glycerophosphoinositols (PIs) and other metabolites that are significantly upregulated in prostate cancer cells derived from distant metastatic sites. Transcriptomic and biochemical analysis of key enzymes that are involved in lipid metabolism demonstrate the significant upregulation of choline kinase alpha in the metastatic cells compared to the non-malignant and non-metastatic cells. This suggests that different de novo lipogenesis and other specific signal transduction pathways are activated in aggressive metastatic cells as compared to normal and non-metastatic cells.


Journal of Biological Chemistry | 2017

Novel interconnections in lipid metabolism revealed by overexpression of sphingomyelin synthase-1

Gergana M. Deevska; P. Patrick Dotson; Alexander A. Karakashian; Giorgis Isaac; M Wrona; Samuel B. Kelly; Alfred H. Merrill; Mariana Nikolova-Karakashian

This study investigates the consequences of elevating sphingomyelin synthase 1 (SMS1) activity, which generates the main mammalian sphingolipid, sphingomyelin. HepG2 cells stably transfected with SMS1 (HepG2-SMS1) exhibit elevated enzyme activity in vitro and increased sphingomyelin content (mainly C22:0- and C24:0-sphingomyelin) but lower hexosylceramide (Hex-Cer) levels. HepG2-SMS1 cells have fewer triacylglycerols than controls but similar diacylglycerol acyltransferase activity, triacylglycerol secretion, and mitochondrial function. Treatment with 1 mm palmitate increases de novo ceramide synthesis in both cell lines to a similar degree, causing accumulation of C16:0-ceramide (and some C18:0-, C20:0-, and C22:0-ceramides) as well as C16:0- and C18:0-Hex-Cers. In these experiments, the palmitic acid is delivered as a complex with delipidated BSA (2:1, mol/mol) and does not induce significant lipotoxicity. Based on precursor labeling, the flux through SM synthase also increases, which is exacerbated in HepG2-SMS1 cells. In contrast, palmitate-induced lipid droplet formation is significantly reduced in HepG2-SMS1 cells. [14C]Choline and [3H]palmitate tracking shows that SMS1 overexpression apparently affects the partitioning of palmitate-enriched diacylglycerol between the phosphatidylcholine and triacylglycerol pathways, to the benefit of the former. Furthermore, triacylglycerols from HepG2-SMS1 cells are enriched in polyunsaturated fatty acids, which is indicative of active remodeling. Together, these results delineate novel metabolic interactions between glycerolipids and sphingolipids.

Collaboration


Dive into the Giorgis Isaac's collaboration.

Top Co-Authors

Avatar

J Yuk

Waters Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K Yu

Waters Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bharathi Avula

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar

Ikhlas A. Khan

University of Mississippi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge