Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovana Seno Di Marco is active.

Publication


Featured researches published by Giovana Seno Di Marco.


Journal of Clinical Investigation | 2011

FGF23 induces left ventricular hypertrophy

Christian Faul; Ansel P. Amaral; Behzad Oskouei; Ming Chang Hu; Alexis Sloan; Tamara Isakova; Orlando M. Gutiérrez; Robier Aguillon-Prada; Joy Lincoln; Joshua M. Hare; Peter Mundel; Azorides R. Morales; Julia J. Scialla; Michael J. Fischer; Elsayed Z. Soliman; Jing Chen; Alan S. Go; Sylvia E. Rosas; Lisa Nessel; Raymond R. Townsend; Harold I. Feldman; Martin St. John Sutton; Akinlolu Ojo; Crystal A. Gadegbeku; Giovana Seno Di Marco; Stefan Reuter; Dominik Kentrup; Klaus Tiemann; Marcus Brand; Joseph A. Hill

Chronic kidney disease (CKD) is a public health epidemic that increases risk of death due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiovascular disease in individuals with CKD. Elevated levels of FGF23 have been linked to greater risks of LVH and mortality in patients with CKD, but whether these risks represent causal effects of FGF23 is unknown. Here, we report that elevated FGF23 levels are independently associated with LVH in a large, racially diverse CKD cohort. FGF23 caused pathological hypertrophy of isolated rat cardiomyocytes via FGF receptor-dependent activation of the calcineurin-NFAT signaling pathway, but this effect was independent of klotho, the coreceptor for FGF23 in the kidney and parathyroid glands. Intramyocardial or intravenous injection of FGF23 in wild-type mice resulted in LVH, and klotho-deficient mice demonstrated elevated FGF23 levels and LVH. In an established animal model of CKD, treatment with an FGF-receptor blocker attenuated LVH, although no change in blood pressure was observed. These results unveil a klotho-independent, causal role for FGF23 in the pathogenesis of LVH and suggest that chronically elevated FGF23 levels contribute directly to high rates of LVH and mortality in individuals with CKD.


Journal of The American Society of Nephrology | 2009

The Soluble VEGF Receptor sFlt1 Contributes to Endothelial Dysfunction in CKD

Giovana Seno Di Marco; Stefan Reuter; Uta Hillebrand; Susanne Amler; Maximilian König; Etienne Larger; Hans Oberleithner; Eva Brand; Hermann Pavenstädt; Marcus Brand

Endothelial dysfunction contributes to the increased cardiovascular risk that accompanies CKD. We hypothesized that the soluble VEGF receptor 1 (sFlt-1), a VEGF antagonist, plays a role in endothelial dysfunction and decreased angiogenesis in CKD. We enrolled 130 patients with CKD stages 3 to 5 and 56 age- and gender-matched control patients. Plasma sFlt-1 levels were higher in patients with CKD and, after multivariate regression analyses, exclusively associated with renal function and levels of vWF, a marker of endothelial dysfunction. Compared with serum from control patients, both recombinant sFlt-1 and serum from patients with CKD had antiangiogenic activity in the chick chorioallantoic membrane (CAM) assay, induced endothelial cell apoptosis in vitro, and decreased nitric oxide generation in two different endothelial cell lines. Pretreating the sera with an antibody against sFlt-1 abrogated all of these effects. Furthermore, we observed increased sFlt1 levels in 5/6-nephrectomized rats compared with sham-operated animals. Finally, using real-time PCR and ELISA, we identified monocytes as a possible source of increased sFlt-1 in patients with CKD. Our findings show that excess sFlt-1 associates with endothelial dysfunction in CKD and suggest that increased sFlt-1 may predict cardiovascular risk in CKD.


Cardiovascular Research | 2003

NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: involvement of the renin–angiotensin system

Maria do Carmo Pinho Franco; Eliana H. Akamine; Giovana Seno Di Marco; Dulce Elena Casarini; Zuleica B. Fortes; Rita C. Tostes; Maria Helena C. Carvalho; Dorothy Nigro

OBJECTIVE We previously reported that intrauterine undernutrition increased the oxidative stress by decreasing superoxide dismutase activity. In the present study, we tested whether NADPH oxidase, xanthine oxidase, cyclooxygenase or nitric oxide synthase are responsible for the increased O(2)(-) generation observed in rats submitted to intrauterine undernutrition. In addition, we investigated the effect of angiotensin II (ANG II) on O(2)(-) production via activation of NADPH oxidase. METHODS Female pregnant Wistar rats were fed either normal or 50% of the normal intake diets, during the whole gestational period. At 16 weeks of age, the rats were used for the study of intravital fluorescence microscopy; microvascular reactivity, local ANG II concentration and AT(1), p22(phox) and gp91(phox) gene expression. In this study only the male offspring was used. RESULTS Treatment of mesenteric arterioles with the xanthine oxidase inhibitor oxypurinol, the nitric oxide synthase inhibitor L-NAME or the cyclooxygenase inhibitor diclofenac did not significantly change superoxide production. Thus, these vascular sources of superoxide were not responsible for the increased superoxide concentration. In contrast, treatment with the NADPH oxidase inhibitor apocynin significantly decreased superoxide generation and improved vascular function. On the other hand, intrauterine undernutrition did not alter the gene expression for p22(phox) and gp91(phox). The fact that the local ANG II concentration was increased and the attenuation of oxidative stress by blocking AT(1) receptor with losartan, led us to suggest that ANG II induces O(2)(-) generation in intrauterine undernourished rats. CONCLUSION Our study shows that NADPH oxidase inhibition attenuated superoxide anion generation and ameliorated vascular function in rats submitted to intrauterine undernutrition. Although it is not clear which mechanisms are responsible for the increase in NADPH oxidase activity, a role for ANG II-mediated superoxide production via activation of NADPH oxidase is suggested.


Kidney International | 2016

Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease.

Saurav Singh; Alexander Grabner; Christopher Yanucil; Karla Schramm; Brian Czaya; Stefanie Krick; Mark J. Czaja; Rene Bartz; Reimar Abraham; Giovana Seno Di Marco; Marcus Brand; Myles Wolf; Christian Faul

Patients with chronic kidney disease (CKD) develop increased levels of the phosphate-regulating hormone, fibroblast growth factor (FGF) 23, that are associated with a higher risk of mortality. Increases in inflammatory markers are another common feature that predicts poor clinical outcomes. Elevated FGF23 is associated with higher circulating levels of inflammatory cytokines in CKD, which can stimulate osteocyte production of FGF23. Here, we studied whether FGF23 can directly stimulate hepatic production of inflammatory cytokines in the absence of α-klotho, an FGF23 coreceptor in the kidney that is not expressed by hepatocytes. By activating FGF receptor isoform 4 (FGFR4), FGF23 stimulated calcineurin signaling in cultured hepatocytes, which increased the expression and secretion of inflammatory cytokines, including C-reactive protein. Elevating serum FGF23 levels increased hepatic and circulating levels of C-reactive protein in wild-type mice, but not in FGFR4 knockout mice. Administration of an isoform-specific FGFR4 blocking antibody reduced hepatic and circulating levels of C-reactive protein in the 5/6 nephrectomy rat model of CKD. Thus, FGF23 can directly stimulate hepatic secretion of inflammatory cytokines. Our findings indicate a novel mechanism of chronic inflammation in patients with CKD and suggest that FGFR4 blockade might have therapeutic anti-inflammatory effects in CKD.


Atherosclerosis | 2014

Damage of the endothelial glycocalyx in chronic kidney disease

Jan-Sören Padberg; Anne Wiesinger; Giovana Seno Di Marco; Stefan Reuter; Alexander Grabner; Dominik Kentrup; Alexander Lukasz; Hans Oberleithner; Hermann Pavenstädt; Marcus Brand; Philipp Kümpers

BACKGROUND AND OBJECTIVES The endothelial glycocalyx (eGC), a mesh of anionic biopolymers covering the luminal surface of endothelial cells, is considered as an intravascular compartment that protects the vessel wall against pathogenic insults in cardiovascular disease. We hypothesized that chronic kidney disease (CKD) is associated with reduced eGC integrity and subsequent endothelial dysfunction. METHODS & RESULTS Shedding of two major components of the eGC, namely syndecan-1 (Syn-1) and hyaluronan (HA), was measured by ELISA in 95 patients with CKD (stages 3-5) and 31 apparently healthy controls. Plasma levels of Syn-1 and HA increased steadily across CKD stages (5- and 5.5-fold, respectively P < 0.001) and were independently associated with impaired renal function after multivariate adjustment. Furthermore, Syn-1 and HA correlated tightly with plasma markers of endothelial dysfunction such as soluble fms-like tyrosine kinase-1 (sFlt-1), soluble vascular adhesion molecule-1 (sVCAM-1), von-Willebrand-Factor (vWF) and angiopoietin-2 (P < 0.001). Experimentally, excessive shedding of the eGC, evidenced by 11-fold increased Syn-1 plasma levels, was also observed in an established rat model of CKD, the 5/6-nephrectomized rats. Consistently, an atomic force microscopy-based approach evidenced a significant decrease in eGC thickness (360 ± 79 vs. 157 ± 29 nm, P = 0.001) and stiffness (0.33 ± 0.02 vs. 0.22 ± 0.01 pN/nm, P < 0.001) of aorta endothelial cell explants isolated from CKD rats. CONCLUSION Our findings provide evidence for damage of the atheroprotective eGC as a consequence of CKD and potentially open a new avenue to pathophysiology and treatment of cardiovascular disease in renal patients.


Kidney International | 2013

High phosphate directly affects endothelial function by downregulating annexin II

Giovana Seno Di Marco; Maximilian König; Christian Stock; Anne Wiesinger; Uta Hillebrand; Stefanie Reiermann; Stefan Reuter; Susanne Amler; Gabriele Köhler; Friedrich Buck; Manfred Fobker; Philipp Kümpers; Hans Oberleithner; Martin Hausberg; Detlef Lang; Hermann Pavenstädt; Marcus Brand

Hyperphosphatemia is associated with increased cardiovascular risk in patients with renal disease and in healthy individuals. Here we tested whether high phosphate has a role in the pathophysiology of cardiovascular events by interfering with endothelial function, thereby impairing microvascular function and angiogenesis. Protein expression analysis found downregulation of annexin II in human coronary artery endothelial cells, an effect associated with exacerbated shedding of annexin II-positive microparticles by the cells exposed to high phosphate media. EAhy926 endothelial cells exposed to sera from hyperphosphatemic patients also display decreased annexin II, suggesting a negative correlation between serum phosphate and annexin II expression. By using endothelial cell-based assays in vitro and the chicken chorioallantoic membrane assay in vivo, we found that angiogenesis, vessel wall morphology, endothelial cell migration, capillary tube formation, and endothelial survival were impaired in a hyperphosphatemic milieu. Blockade of membrane-bound extracellular annexin II with a specific antibody mimicked the effects of high phosphate. In addition, high phosphate stiffened endothelial cells in vitro and in rats in vivo. Thus, our results link phosphate and adverse clinical outcomes involving the endothelium in both healthy individuals and patients with renal disease.


Nephrology Dialysis Transplantation | 2014

Treatment of established left ventricular hypertrophy with fibroblast growth factor receptor blockade in an animal model of CKD

Giovana Seno Di Marco; Stefan Reuter; Dominik Kentrup; Alexander Grabner; Ansel P. Amaral; Manfred Fobker; Jörg Stypmann; Hermann Pavenstädt; Myles Wolf; Christian Faul; Marcus Brand

BACKGROUND Activation of fibroblast growth factor receptor (FGFR)-dependent signalling by FGF23 may contribute to the complex pathogenesis of left ventricular hypertrophy (LVH) in chronic kidney disease (CKD). Pan FGFR blockade by PD173074 prevented development of LVH in the 5/6 nephrectomy rat model of CKD, but its ability to treat and reverse established LVH is unknown. METHODS CKD was induced in rats by 5/6 nephrectomy. Two weeks later, rats began treatment with vehicle (0.9% NaCl) or PD173074, 1 mg/kg once-daily for 3 weeks. Renal function was determined by urine and blood analyses. Left ventricular (LV) structure and function were determined by echocardiography, histopathology, staining for myocardial fibrosis (Sirius-Red) and investigating cardiac gene expression profiles by real-time PCR. RESULTS Two weeks after inducing CKD by 5/6 nephrectomy, rats manifested higher (mean ± SEM) systolic blood pressure (208 ± 4 versus 139 ± 3 mmHg; P < 0.01), serum FGF23 levels (1023 ± 225 versus 199 ± 9 pg/mL; P < 0.01) and LV mass (292 ± 9 versus 220 ± 3 mg; P < 0.01) when compared with sham-operated animals. Thereafter, 3 weeks of treatment with PD173074 compared with vehicle did not significantly change blood pressure, kidney function or metabolic parameters, but significantly reduced LV mass (230 ± 14 versus 341 ± 33 mg; P < 0.01), myocardial fibrosis (2.5 ± 0.7 versus 5.4 ± 0.95% staining/field; P < 0.01) and cardiac expression of genes associated with pathological LVH, while significantly increasing ejection fraction (18 versus 2.5% post-treatment increase; P < 0.05). CONCLUSIONS FGFR blockade improved cardiac structure and function in 5/6 nephrectomy rats with previously established LVH. These data support FGFR activation as a potentially modifiable, blood pressure-independent molecular mechanism of LVH in CKD.


Kidney International | 2011

Downregulation of the antioxidant protein peroxiredoxin 2 contributes to angiotensin II–mediated podocyte apoptosis

Hsiang-Hao Hsu; Sigrid Hoffmann; Giovana Seno Di Marco; Nicole Endlich; Jasna Peter-Katalinić; Thomas Weide; Hermann Pavenstädt

Podocytes have a significant role in establishing selective permeability of the glomerular filtration barrier. Sustained renin–angiotensin–aldosterone system activation is crucial to the pathogenesis of podocyte injury, but the mechanisms by which angiotensin II modulates podocyte survival due to physiological or injurious stimuli remain unclear. Here, we used proteomic analysis to find new mediators of angiotensin II–induced podocyte injury. Antioxidant protein peroxiredoxin 2 expression was decreased in cultured podocytes stimulated with angiotensin II. Peroxiredoxin 2 was found to be expressed in podocytes in vivo, and its expression was decreased in the glomeruli of rats transgenic for angiotensin II type 1 receptors in a podocyte-specific manner, or in rats infused with angiotensin II. Downregulation of peroxiredoxin 2 in podocytes resulted in increased reactive oxygen species release, protein overoxidation, and inhibition of the Akt pathway. Both treatment with angiotensin II and downregulation of peroxiredoxin 2 expression led to apoptosis of podocytes. Thus, peroxiredoxin 2 is an important modulator of angiotensin II–induced podocyte injury.


European Heart Journal | 2011

Cardioprotective effect of calcineurin inhibition in an animal model of renal disease

Giovana Seno Di Marco; Stefan Reuter; Dominik Kentrup; Lu Ting; Liu Ting; Alexander Grabner; Annett M. Jacobi; Hermann Pavenstädt; Hideo Baba; Klaus Tiemann; Marcus Brand

AIMS Chronic kidney disease is directly associated with cardiovascular complications. Heart remodelling, including fibrosis, hypertrophy, and decreased vascularization, is frequently present in renal diseases. Our objective was to investigate the impact of calcineurin inhibitors (CNI) on cardiac remodelling and function in a rat model of renal disease. METHODS AND RESULTS Male Sprague Dawley rats were divided into six groups: sham-operated rats, 5/6 nephrectomized rats (Nx) treated with vehicle, CNI (cyclosporine A 5.0 or 7.5, or tacrolimus 0.5 mg/kg/day) or hydralazine (20 mg/kg twice a day) for 14 days, starting on the day of surgery. Creatinine clearance was significantly lower and blood pressure significantly higher in Nx rats when compared with controls. Morphological and echocardiographic analyses revealed increased left ventricular hypertrophy and decreased number of capillaries in Nx rats. Treatment with CNI affected neither the renal function nor the blood pressure, but prevented the development of cardiac hypertrophy and improved vascularization. In addition, regional blood volume improved as confirmed by contrast agent-based echocardiography. Hydralazine treatment did not avoid heart remodelling in this model. Gene expression analysis verified a decrease in hypertrophic genes in the heart of CNI-treated rats, while pro-angiogenic and stem cell-related genes were upregulated. Moreover, mobilization of stem/progenitor cells was increased through manipulation of the CD26/SDF-1 system. CONCLUSION We conclude from our studies that CNI-treatment significantly prevented cardiac remodelling and improved heart function in Nx rats without affecting renal function and blood pressure. This sheds new light on possible therapeutic strategies for renal patients at high cardiovascular risk.


Journal of the Renin-Angiotensin-Aldosterone System | 2003

Neutral endopeptidase expression in mesangial cells.

Fabiana Ebihara; Giovana Seno Di Marco; Maria A. Juliano; Dulce Elena Casarini

In the kidney, neutral endopeptidase (NEP) is implicated in the metabolism of several peptides involved in blood pressure and sodium homeostasis control, such as the atrial natriuretic peptide, bradykinin and angiotensin I. Due to its physiological importance in the modulation of pressor responses, the presence of NEP in mouse mesangial cells has been investigated, since these cells control glomerular function and are able to synthesise components of the renin-angiotensin system. A NEP-like activity (NEP-like) that cleaves the fluorogenic substrates Abz-BKQ-EDDnp and Abz-DRRL-EDDnp was purified from mesangial cell lysate by ion-exchange, followed by gel filtration chromatography. The enzyme was able to hydrolyse bradykinin at the G4-F5 peptide bond and was inhibited by thiorphan. A pH study established that enzyme activity was maximal at pH 7.5 and the determined Km was 4.86 µM using Abz-DRRL-EDDnp as substrate. NEP-like was recognised by monoclonal anti-NEP and had a molecular mass of 95 kDa. The purified enzyme was sequenced and showed similarity with human, rat, mouse and rabbit NEPs. We isolated, for the first time, NEP-like from mesangial cells. This enzyme could have an important role in the renal physiology by its action upon different peptides that are able to alter renal haemodynamics.

Collaboration


Dive into the Giovana Seno Di Marco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dulce Elena Casarini

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nestor Schor

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Carlos P. Vio

Pontifical Catholic University of Chile

View shared research outputs
Researchain Logo
Decentralizing Knowledge