Giovanna Balconi
Mario Negri Institute for Pharmacological Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giovanna Balconi.
Cell | 1999
Peter Carmeliet; MariaGrazia Lampugnani; Lieve Moons; Ferrucio Breviario; Veerle Compernolle; Françoise Bono; Giovanna Balconi; Raffaella Spagnuolo; Bert Oosthuyse; Mieke Dewerchin; Adriana Zanetti; Anne Angellilo; Virginie Mattot; Dieter Nuyens; Esther Lutgens; Frederic Clotman; Marco C. de Ruiter; Adriana C. Gittenberger-de Groot; Robert E. Poelmann; Florea Lupu; Jean-Marc Herbert; Desire Collen; Elizabetta Dejana
Vascular endothelial cadherin, VE-cadherin, mediates adhesion between endothelial cells and may affect vascular morphogenesis via intracellular signaling, but the nature of these signals remains unknown. Here, targeted inactivation (VEC-/-) or truncation of the beta-catenin-binding cytosolic domain (VECdeltaC/deltaC) of the VE-cadherin gene was found not to affect assembly of endothelial cells in vascular plexi, but to impair their subsequent remodeling and maturation, causing lethality at 9.5 days of gestation. Deficiency or truncation of VE-cadherin induced endothelial apoptosis and abolished transmission of the endothelial survival signal by VEGF-A to Akt kinase and Bcl2 via reduced complex formation with VEGF receptor-2, beta-catenin, and phosphoinositide 3 (PI3)-kinase. Thus, VE-cadherin/ beta-catenin signaling controls endothelial survival.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Gianluigi Condorelli; Ugo Borello; L. De Angelis; Michael V.G. Latronico; Dario Sirabella; Marcello Coletta; Rossella Galli; Giovanna Balconi; A. Follenzi; Giacomo Frati; M. G. Cusella De Angelis; L. Gioglio; S. Amuchastegui; L. Adorini; L. Naldini; A. Vescovi; Elisabetta Dejana; Giulio Cossu
The concept of tissue-restricted differentiation of postnatal stem cells has been challenged by recent evidence showing pluripotency for hematopoietic, mesenchymal, and neural stem cells. Furthermore, rare but well documented examples exist of already differentiated cells in developing mammals that change fate and trans-differentiate into another cell type. Here, we report that endothelial cells, either freshly isolated from embryonic vessels or established as homogenous cells in culture, differentiate into beating cardiomyocytes and express cardiac markers when cocultured with neonatal rat cardiomyocytes or when injected into postischemic adult mouse heart. Human umbilical vein endothelial cells also differentiate into cardiomyocytes under similar experimental conditions and transiently coexpress von Willebrand factor and sarcomeric myosin. In contrast, neural stem cells, which efficiently differentiate into skeletal muscle, differentiate into cardiomyocytes at a low rate. Fibroblast growth factor 2 and bone morphogenetic protein 4, which activate cardiac differentiation in embryonic cells, do not activate cardiogenesis in endothelial cells or stimulate trans-differentiation in coculture, suggesting that different signaling molecules are responsible for cardiac induction during embryogenesis and in successive periods of development. The fact that endothelial cells can generate cardiomyocytes sheds additional light on the plasticity of endothelial cells during development and opens perspectives for cell autologous replacement therapies.
Journal of Cell Biology | 2003
Maria Grazia Lampugnani; Adriana Zanetti; Monica Corada; Takamune Takahashi; Giovanna Balconi; Ferruccio Breviario; Fabrizio Orsenigo; Anna Cattelino; Rolf Kemler; Thomas O. Daniel; Elisabetta Dejana
Confluent endothelial cells respond poorly to the proliferative signals of VEGF. Comparing isogenic endothelial cells differing for vascular endothelial cadherin (VE-cadherin) expression only, we found that the presence of this protein attenuates VEGF-induced VEGF receptor (VEGFR) 2 phosphorylation in tyrosine, p44/p42 MAP kinase phosphorylation, and cell proliferation. VE-cadherin truncated in β-catenin but not p120 binding domain is unable to associate with VEGFR-2 and to induce its inactivation. β-Catenin–null endothelial cells are not contact inhibited by VE-cadherin and are still responsive to VEGF, indicating that this protein is required to restrain growth factor signaling. A dominant-negative mutant of high cell density–enhanced PTP 1 (DEP-1)//CD148 as well as reduction of its expression by RNA interference partially restore VEGFR-2 phosphorylation and MAP kinase activation. Overall the data indicate that VE-cadherin–β-catenin complex participates in contact inhibition of VEGF signaling. Upon stimulation with VEGF, VEGFR-2 associates with the complex and concentrates at cell–cell contacts, where it may be inactivated by junctional phosphatases such as DEP-1. In sparse cells or in VE-cadherin–null cells, this phenomenon cannot occur and the receptor is fully activated by the growth factor.
Journal of Cell Biology | 2003
Anna Cattelino; Stefan Liebner; Radiosa Gallini; Adriana Zanetti; Giovanna Balconi; Alessandro Corsi; Paolo Bianco; Hartwig Wolburg; Robert Moore; Boussadia Oreda; Rolf Kemler; Elisabetta Dejana
Using the Cre/loxP system we conditionally inactivated β-catenin in endothelial cells. We found that early phases of vasculogenesis and angiogenesis were not affected in mutant embryos; however, vascular patterning in the head, vitelline, umbilical vessels, and the placenta was altered. In addition, in many regions, the vascular lumen was irregular with the formation of lacunae at bifurcations, vessels were frequently hemorrhagic, and fluid extravasation in the pericardial cavity was observed. Cultured β-catenin −/− endothelial cells showed a different organization of intercellular junctions with a decrease in α-catenin in favor of desmoplakin and marked changes in actin cytoskeleton. These changes paralleled a decrease in cell–cell adhesion strength and an increase in paracellular permeability. We conclude that in vivo, the absence of β-catenin significantly reduces the capacity of endothelial cells to maintain intercellular contacts. This may become more marked when the vessels are exposed to high or turbulent flow, such as at bifurcations or in the beating heart, leading to fluid leakage or hemorrhages.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2000
Giovanna Balconi; Raffaella Spagnuolo; Elisabetta Dejana
Totipotent embryonic stem cells can be induced to differentiate to endothelium in vitro. This may be a useful tool for obtaining cultures of genetically manipulated endothelial cells because embryonic stem cells are relatively easy to transfect and are commonly used for gene inactivation experiments in mice. However, embryonic stem cell-derived endothelial cells could not be easily separated from embryoid bodies and maintained in culture. In this study, we describe the isolation and characterization of immortalized endothelial cell lines obtained from embryonic stem cells differentiated in vitro. The cell lines were analyzed for expression of endothelial cell markers, including growth factor receptors and adhesion molecules, and compared with endothelial cells obtained from the yolk sac, the embryo proper, or the heart microcirculation of the adult. We propose that this approach may be useful for obtaining endothelial cells carrying gene mutations that are lethal at very early stages of development.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2005
Daniela Galli; Anna Innocenzi; Lidia Staszewsky; Lucia Zanetta; Maurilio Sampaolesi; Antonio Bai; Elena Martinoli; Eleonora Carlo; Giovanna Balconi; Fabio Fiordaliso; Stefano Chimenti; Gabriella Cusella; Elisabetta Dejana; Giulio Cossu; Roberto Latini
Objective—To test the potential of mesoangioblasts (Mabs) in reducing postischemic injury in comparison with bone marrow progenitor cells (BMPCs), fibroblasts (Fbs), and embryonic stem cell–derived endothelial cells (ECs), and to identify putative cellular protective mechanisms. Methods and Results—Cells were injected percutaneously in the left ventricular (LV) chamber of C57BL/6 mice, 3 to 6 hours after coronary ligation, and detected in the hearts 2 days and 6 weeks later. Echocardiographic examinations were performed at 6 weeks. LV dilation was reduced and LV shortening fraction was improved with Mabs and BMPCs but not with ECs and Fbs. Donor cell colonization of the host myocardium was modest and predominantly in the smooth muscle layer of vessels. Capillary density was higher in the peripheral infarct area and apoptotic cardiomyocytes were fewer with Mabs and BMPCs. Mabs and BMPCs, but not Fbs or ECs, promoted survival of cultured cardiocytes under low-oxygen in culture. This activity was present in Mab-conditioned medium and could be replaced by a combination of basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF)-1, and hepatocyte growth factor (HGF), all of which are produced by these cells. Conditioned medium from Mabs, but not from Fbs, stimulated proliferation of smooth muscle cells in vitro. Conclusions—Mabs appear as effective as BMPCs in reducing postinfarction LV dysfunction, likely through production of antiapoptotic and angiogenic factors.
Cell Death & Differentiation | 2008
Beatriz G. Gálvez; Maurilio Sampaolesi; Andrea Barbuti; Alessia Crespi; Diego Covarello; Silvia Brunelli; Arianna Dellavalle; Stefania Crippa; Giovanna Balconi; Ivan Cuccovillo; Fabiola Molla; Lidia Staszewsky; Roberto Latini; Dario DiFrancesco; Giulio Cossu
Different cardiac stem/progenitor cells have been recently identified in the post-natal heart. We describe here the identification, clonal expansion and characterization of self-renewing progenitors that differ from those previously described for high spontaneous cardiac differentiation. Unique coexpression of endothelial and pericyte markers identify these cells as cardiac mesoangioblasts and allow prospective isolation and clonal expansion from the juvenile mouse ventricle. Cardiac mesoangioblasts express many cardiac transcription factors and spontaneously differentiate into beating cardiomyocytes that assemble mature sarcomeres and express typical cardiac ion channels. Cells similarly isolated from the atrium do not spontaneously differentiate. When injected into the ventricle after coronary artery ligation, cardiac mesoangioblasts efficiently generate new myocardium in the peripheral area of the necrotic zone, as they do when grafted in the embryonic chick heart. These data identify cardiac mesoangioblasts as committed progenitors, downstream of earlier stem/progenitor cells and suitable for the cell therapy of a subset of juvenile cardiac diseases.
Journal of Cell Science | 2005
Gianfranco Bazzoni; Paolo Tonetti; Luca Manzi; Maria Rosaria Cera; Giovanna Balconi; Elisabetta Dejana
Junctional adhesion molecule-A (JAM-A) is a cell-surface glycoprotein that localizes to intercellular junctions and associates with intracellular proteins via PSD95-Dlg-ZO1-binding residues. To define the functional consequences of JAM-A expression, we have produced endothelial cells from JAM-A-deficient mice. We report here that the absence of JAM-A enhanced spontaneous and random motility. In turn, the enhanced motility of JAM-A-negative cells was abrogated either on transfection of exogenous JAM-A or on treatment with inhibitors of glycogen synthase kinase-3β (GSK-3β). In addition, in JAM-A-positive cells, motility was enhanced on inactivation of protein kinase Cζ (PKCζ), which is an inhibitor of GSK-3β. Although these findings suggested that JAM-A might inhibit GSK-3β, we found that expression per se of JAM-A did not change the levels of inactive GSK-3β. Thus, JAM-A expression may regulate effectors of motility that are also downstream of the PKCζ/GSK-3β axis. In support of this view, we found that JAM-A absence increased the number of actin-containing protrusions, reduced the stability of microtubules and impaired the formation of focal adhesions. Notably, all the functional consequences of JAM-A absence were reversed either on treatment with GSK-3β inhibitors or on transfection of full-length JAM-A, but not on transfection of a JAM-A deletion mutant devoid of the PSD95-Dlg-ZO1-binding residues. Thus, by regulating cytoskeletal and adhesive structures, JAM-A expression prevents cell motility, probably in a PSD95-Dlg-ZO1-dependent manner.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2002
Adriana Zanetti; Maria Grazia Lampugnani; Giovanna Balconi; Ferruccio Breviario; Monica Corada; Luisa Lanfrancone; Elisabetta Dejana
Vascular endothelial (VE)-cadherin is endothelium specific, mediates homophilic adhesion, and is clustered at intercellular junctions. VE-cadherin is required for normal development of the vasculature in the embryo and for angiogenesis in the adult. Here, we report that VE-cadherin is associated with VE growth factor (VEGF) receptor-2 (VEGFR-2) on the exposure of endothelial cells to VEGF. The binding parallels receptor phosphorylation on tyrosine residues, which is maximal at 5 minutes and then declines within 30 minutes. Tyrosine phosphorylation of VE-cadherin was maximal at 30 minutes after the addition of the growth factor. At this time point, the protein could be coimmunoprecipitated with the adaptor protein Shc. Pull-down experiments with different Shc domains and mutants of the VE-cadherin cytoplasmic tail have shown that Shc binds to the carboxy-terminal domain of the VE-cadherin tail through its Src homology 2 domain (SH2). We found that Shc phosphorylation lasts longer in endothelial cells carrying a targeted null mutation in the VE-cadherin gene than in VE-cadherin–positive cells. These data suggest that VE-cadherin expression exerts a negative effect on Shc phosphorylation by VEGFR-2. We speculate that VE-cadherin binding to Shc promotes its dephosphorylation through associated phosphatases.
Experimental Biology and Medicine | 1981
Brunella Barbieri; Giovanna Balconi; Elisabetta Dejana; Maria Benedetta Donati
Abstract Cultured endothelial cells (EC) from bovine aorta and umbilical vein induced retraction of a fibrin clot formed by addition of thrombin to cell-free plasma. Fibrin clot retractile (FCR) activity increased with time (1-24 hr) and with the number of cells in the system (1-4 × 106/ml, final concentration), and was inhibited at 22° or in the presence of Na2-EDTA; moreover, no retraction occurred when batroxobin was used as a clotting agent instead of thrombin. FCR of EC thus showed many characteristics in common with platelet- and fibroblast-induced clot retraction. FCR activity of bovine EC increased with the number of subcultures, being very low in cells harvested from primary cultures. In contrast, human EC had high activity in primary cultures. Like fibroblasts, EC with a higher density in culture showed lower FCR, suggesting that confluency inhibits the cell contractile capacity. FCR could thus represent a simple in vitro test to further characterize the biology of EC and to evaluate their role in the development of fibrin thrombi.