Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Cenacchi is active.

Publication


Featured researches published by Giovanna Cenacchi.


European Journal of Human Genetics | 2015

Primary coenzyme Q10 deficiency presenting as fatal neonatal multiorgan failure.

Maria Andrea Desbats; Annalisa Vetro; Ivan Limongelli; Giada Lunardi; Alberto Casarin; Mara Doimo; Marco Spinazzi; Corrado Angelini; Giovanna Cenacchi; Alberto Burlina; Maria Angeles Rodriguez Hernandez; Lino Chiandetti; Maurizio Clementi; Eva Trevisson; Plácido Navas; Orsetta Zuffardi; Leonardo Salviati

Coenzyme Q10 deficiency is a clinically and genetically heterogeneous disorder, with manifestations that may range from fatal neonatal multisystem failure, to adult-onset encephalopathy. We report a patient who presented at birth with severe lactic acidosis, proteinuria, dicarboxylic aciduria, and hepatic insufficiency. She also had dilation of left ventricle on echocardiography. Her neurological condition rapidly worsened and despite aggressive care she died at 23u2009h of life. Muscle histology displayed lipid accumulation. Electron microscopy showed markedly swollen mitochondria with fragmented cristae. Respiratory-chain enzymatic assays showed a reduction of combined activities of complex I+III and II+III with normal activities of isolated complexes. The defect was confirmed in fibroblasts, where it could be rescued by supplementing the culture medium with 10u2009μM coenzyme Q10. Coenzyme Q10 levels were reduced (28% of controls) in these cells. We performed exome sequencing and focused the analysis on genes involved in coenzyme Q10 biosynthesis. The patient harbored a homozygous c.545T>G, p.(Met182Arg) alteration in COQ2, which was validated by functional complementation in yeast. In this case the biochemical and morphological features were essential to direct the genetic diagnosis. The parents had another pregnancy after the biochemical diagnosis was established, but before the identification of the genetic defect. Because of the potentially high recurrence risk, and given the importance of early CoQ10 supplementation, we decided to treat with CoQ10 the newborn child pending the results of the biochemical assays. Clinicians should consider a similar management in siblings of patients with CoQ10 deficiency without a genetic diagnosis.


American Journal of Human Genetics | 2016

TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation.

Jos C. Jansen; Sharita Timal; Monique van Scherpenzeel; Helen Michelakakis; Dorothée Vicogne; Angel Ashikov; Marina Moraitou; Alexander Hoischen; Karin Huijben; Gerry Steenbergen; Marjolein A.W. van den Boogert; Francesco Porta; Pier Luigi Calvo; Mersyni Mavrikou; Giovanna Cenacchi; Geert van den Bogaart; Jody Salomon; Adriaan G. Holleboom; Richard J. Rodenburg; Joost P. H. Drenth; Martijn A. Huynen; Ron A. Wevers; Eva Morava; François Foulquier; Joris A. Veltman; Dirk J. Lefeber

Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation.


Nanotoxicology | 2015

The effects of palladium nanoparticles on the renal function of female Wistar rats

Luca Fontana; Leso; Alessandro Marinaccio; Giovanna Cenacchi; Papa; Kerstin Leopold; Roland Schindl; B Bocca; A Alimonti; Ivo Iavicoli

Abstract A number of studies have shown that palladium nanoparticles are able to exert some adverse health effects, such as concentration-dependent cytotoxicity, induction of apoptosis and alterations of the release and expression of numerous cytokines. Nevertheless, our current knowledge of the potential toxic effects induced by exposure to these nanoparticles is far from being complete. For this reason, the present study assessed the possible renal toxicity of palladium nanoparticles by investigating urinary excretion of retinol binding protein, β2-microglobulin and albumin in female Wistar rats intravenously exposed to different nanoparticle concentrations (0.012, 0.12, 1.2 and 12u2009µg/kg) and by carrying out a morphological observation of the kidneys of treated animals. Results showed a significant increase in urinary retinol binding protein and β2-microglobulin levels in rats that were administered 12u2009µg/kg compared to controls. Moreover, an ultrastructural study of the kidneys revealed significant alterations in the proximal and distal tubular epithelium were observed, with a range of severity, in all experimental conditions. Collectively, our findings suggest that exposure to palladium nanoparticles is able to induce a significant renal tubular dysfunction, whereas it does not seem to affect kidney glomerular filtration. However, further studies are needed to confirm our results, to understand the molecular mechanisms of toxic action and to evaluate the potential adverse effects of these nanoparticles also on the glomerular section of the kidney.


Annals of Neurology | 2016

Liver transplantation for mitochondrial neurogastrointestinal encephalomyopathy

Roberto De Giorgio; L. Pironi; Rita Rinaldi; Elisa Boschetti; Leonardo Caporali; Mariantonietta Capristo; Carlo Casali; Giovanna Cenacchi; Manuela Contin; Roberto D'Angelo; Antonietta D'Errico; Laura Ludovica Gramegna; Raffaele Lodi; Alessandra Maresca; Susan Mohamed; Maria Cristina Morelli; Valentina Papa; Caterina Tonon; Vitaliano Tugnoli; Valerio Carelli; Roberto D'Alessandro; Antonio Daniele Pinna

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal, recessive disease caused by mutations in the gene encoding thymidine phosphorylase, leading to reduced enzymatic activity, toxic nucleoside accumulation, and secondary mitochondrial DNA damage. Thymidine phosphorylase replacement has been achieved by allogeneic hematopoietic stem cell transplantation, a procedure hampered by high mortality. Based on high thymidine phosphorylase expression in the liver, a 25‐year‐old severely affected patient underwent liver transplantation. Serum levels of toxic nucleosides rapidly normalized. At 400 days of follow‐up, the patients clinical conditions are stable. We propose liver transplantation as a new therapy for MNGIE. Ann Neurol 2016;80:448–455


Human Molecular Genetics | 2014

A mutation in PAK3 with a dual molecular effect deregulates the RAS/MAPK pathway and drives an X-linked syndromic phenotype

Pamela Magini; Tommaso Pippucci; I-Chun Tsai; Simona Coppola; Emilia Stellacci; Anna Bartoletti-Stella; Daniela Turchetti; Claudio Graziano; Giovanna Cenacchi; Iria Neri; Duccio Maria Cordelli; Valentina Marchiani; Rosalba Bergamaschi; Giuseppe Gasparre; Giovanni Neri; Laura Mazzanti; Annalisa Patrizi; Emilio Franzoni; Giovanni Romeo; Domenico Bordo; Marco Tartaglia; Nicholas Katsanis; Marco Seri

Loss-of-function mutations in PAK3 contribute to non-syndromic X-linked intellectual disability (NS-XLID) by affecting dendritic spine density and morphology. Linkage analysis in a three-generation family with affected males showing ID, agenesis of corpus callosum, cerebellar hypoplasia, microcephaly and ichthyosis, revealed a candidate disease locus in Xq21.33q24 encompassing over 280 genes. Subsequent to sequencing all coding exons of the X chromosome, we identified a single novel variant within the linkage region, affecting a conserved codon of PAK3. Biochemical studies showed that, similar to previous NS-XLID-associated lesions, the predicted amino acid substitution (Lys389Asn) abolished the kinase activity of PAK3. In addition, the introduced residue conferred a dominant-negative function to the protein that drives the syndromic phenotype. Using a combination of in vitro and in vivo studies in zebrafish embryos, we show that PAK3(N389) escapes its physiologic degradation and is able to perturb MAPK signaling via an uncontrolled kinase-independent function, which in turn leads to alterations of cerebral and craniofacial structures in vivo. Our data expand the spectrum of phenotypes associated with PAK3 mutations, characterize a novel mechanism resulting in a dual molecular effect of the same mutation with a complex PAK3 functional deregulation and provide evidence for a direct functional impact of aberrant PAK3 function on MAPK signaling.


Embo Molecular Medicine | 2015

Homozygous NOTCH3 null mutation and impaired NOTCH3 signaling in recessive early‐onset arteriopathy and cavitating leukoencephalopathy

Tommaso Pippucci; Alessandra Maresca; Pamela Magini; Giovanna Cenacchi; Vincenzo Donadio; Flavia Palombo; Valentina Papa; Alex Incensi; Giuseppe Gasparre; Maria Lucia Valentino; Carmela Preziuso; Annalinda Pisano; Michele Ragno; Rocco Liguori; Carla Giordano; Caterina Tonon; Raffaele Lodi; Antonia Parmeggiani; Valerio Carelli; Marco Seri

Notch signaling is essential for vascular physiology. Neomorphic heterozygous mutations in NOTCH3, one of the four human NOTCH receptors, cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Hypomorphic heterozygous alleles have been occasionally described in association with a spectrum of cerebrovascular phenotypes overlapping CADASIL, but their pathogenic potential is unclear. We describe a patient with childhood‐onset arteriopathy, cavitating leukoencephalopathy with cerebral white matter abnormalities presented as diffuse cavitations, multiple lacunar infarctions and disseminated microbleeds. We identified a novel homozygous c.C2898A (p.C966*) null mutation in NOTCH3 abolishing NOTCH3 expression and causing NOTCH3 signaling impairment. NOTCH3 targets acting in the regulation of arterial tone (KCNA5) or expressed in the vasculature (CDH6) were downregulated. Patients vessels were characterized by smooth muscle degeneration as in CADASIL, but without deposition of granular osmiophilic material (GOM), the CADASIL hallmark. The heterozygous parents displayed similar but less dramatic trends in decrease in the expression of NOTCH3 and its targets, as well as in vessel degeneration. This study suggests a functional link between NOTCH3 deficiency and pathogenesis of vascular leukoencephalopathies.


European Journal of Human Genetics | 2015

Clinical and ultrastructural spectrum of diffuse lung disease associated with surfactant protein C mutations

Donatella Peca; Renata Boldrini; Jan Johannson; Joseph T.C. Shieh; Arianna Citti; Stefania Petrini; Teresa Salerno; Salvatore Cazzato; Raffaele Testa; Francesco Messina; Alfredo Onofri; Giovanna Cenacchi; Per Westermark; Nicola Ullman; Paola Cogo; Renato Cutrera; Olivier Danhaive

Genetic defects of surfactant metabolism are associated with a broad range of clinical manifestations, from neonatal respiratory distress syndrome to adult interstitial lung disease. Early therapies may improve symptoms but diagnosis is often delayed owing to phenotype and genotype variability. Our objective was to characterize the cellular/ultrastructural correlates of surfactant protein C (SP-C) mutations in children with idiopathic diffuse lung diseases. We sequenced SFTPC – the gene encoding SP-C – SFTPB and ABCA3, and analyzed morphology, ultrastructure and SP expression in lung tissue when available. We identified eight subjects who were heterozygous for SP-C mutations. Median age at onset and clinical course were variable. None of the mutations were located in the mature peptide-encoding region, but were either in the pro-protein BRICHOS or linker C-terminal domains. Although lung morphology was similar to other genetic surfactant metabolism disorders, electron microscopy studies showed specific anomalies, suggesting surfactant homeostasis disruption, plus trafficking defects in the four subjects with linker domain mutation and protein misfolding in the single BRICHOS mutation carrier in whom material was available. Immunolabeling studies showed increased proSP-C staining in all cases. In two cases, amyloid deposits could be identified. Immunochemistry and ultrastructural studies may be useful for diagnostic purposes and for genotype interpretation.


Molecular and Cellular Therapies | 2015

Proteomic analysis of extracellular vesicles from medullospheres reveals a role for iron in the cancer progression of medulloblastoma

Brigitte Bisaro; Giorgia Mandili; Alice Poli; Andrea Piolatto; Valentina Papa; Francesco Novelli; Giovanna Cenacchi; Marco Forni; Cristina Zanini

BackgroundMedulloblastoma (MB) is the most common malignant childhood brain tumor with the propensity to disseminate at an early stage, and is associated with high morbidity. New treatment strategies are needed to improve cure rates and to reduce life-long cognitive and functional deficits associated with current therapies. Extracellular Vesicles (EVs) are important players in cell-to-cell communication in health and diseases. A clearer understanding of cell-to-cell communication in tumors can be achieved by studying EV secretion in medullospheres. This can reveal subtle modifications induced by the passage from adherent to non-adherent growth, as spheres may account for the adaptation of tumor cells to the mutated environment.MethodsFormation of medullospheres from MB cell lines stabilized in adherent conditions was obtained through culture conditioning based on low attachment flasks and specialized medium. EVs collected by ultracentrifugation, in adherent conditions and as spheres, were subjected to electron microscopy, NanoSight measurements and proteomics.ResultsInterestingly, iron carrier proteins were only found in EVs shed by CSC-enriched tumor cell population of spheres. We used iron chelators when culturing MB cell lines as spheres. Iron chelators induced a decrease in number/size of spheres and in stem cell populations able to initiate in vitro spheres formation.ConclusionsThis work suggests a not yet identified role of iron metabolism in MB progression and invasion and opens the possibility to use chelators as adjuvants in anti-tumoral chemotherapy.


Journal of Neuro-oncology | 2015

Wnt activation affects proliferation, invasiveness and radiosensitivity in medulloblastoma

Roberta Salaroli; Alice Ronchi; Francesca R. Buttarelli; Filippo Cortesi; Valeria Marchese; Elena Della Bella; Cristiano Renna; Caterina Baldi; Felice Giangaspero; Giovanna Cenacchi

AbstractMedulloblastomas (MBs) associated with the Wnt activation represent a subgroup with a favorable prognosis, but it remains unclear whether Wnt activation confers a less aggressive phenotype and/or enhances radiosensitivity. To investigate this issue, we evaluated the biological behavior of an MB cell line, UW228-1, stably transfected with human β-catenin cDNA encoding a nondegradable form of β-catenin (UW-B) in standard culture conditions and after radiation treatment. We evaluated the expression, transcriptional activity, and localization of β-catenin in the stably transfected cells using immunofluorescence and WB. We performed morphological analysis using light and electron microscopy. We then analyzed changes in the invasiveness, growth, and mortality in standard culture conditions and after radiation. We demonstrated that (A) Wnt activation inhibited 97xa0% of the invasion capability of the cells, (B) the growth of the UW-B cells was statistically significantly lower than that of all the other control cells (pxa0<xa00.01), (C) the mortality of irradiated UW-B cells was statistically significantly higher than that of the controls and their nonirradiated counterparts (pxa0<xa00.05), and (D) morphological features of neuronal differentiation were observed in the Wnt-activated cells. In tissue samples, the Ki-67 labeling index (LI) was lower in β-catenin-positive samples compared to non-β-catenin positive ones. The Ki-67 LI median (LIxa0=xa040) of the nuclear β-catenin-positive tumor samples was lower than that of non-nuclear β-catenin-positive samples (LIxa0=xa050), but the difference was not statistically significant. Overall, our data suggest that activation of the Wnt pathway reduces the proliferation and invasion of MBs and increases the tumor’s radiosensitivity. n


Biochimica et Biophysica Acta | 2016

Lipolysis and lipophagy in lipid storage myopathies.

Corrado Angelini; Anna Chiara Nascimbeni; Giovanna Cenacchi; Elisabetta Tasca

Aims Triglycerides droplets are massively stored in muscle in Lipid Storage Myopathies (LSM). We studied in muscle regulators of lipophagy, the expression of the transcription factor-EB (TFEB) (a master regulator of lysosomal biogenesis), and markers of autophagy which are induced by starvation and exert a transcriptional control on lipid catabolism. Methods We investigated the factors that regulate lipophagy in muscle biopsies from 6 patients with different types of LSM: 2 cases of riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD), 1 case of primary carnitine deficiency (CD), 2 cases of neutral lipid storage myopathy (NLSD-M), 1 case of carnitine–palmitoyl-transferase-II (CPT) deficiency. Results Conventional morphology and electron microscopy documented the lipid accumulation and its dramatic resolution after treatment. Muscle immunofluorescence showed that while in MADD and NLSD-M there was a co-localized expression of TFEB and p62-SQSTM1 (marker of protein aggregates) in some atrophic fibers, in CD and CPT-II deficiency the reaction was almost normal. In regenerating fibers, TFEB localized in the cytoplasm (inactive form), whereas in atrophic fibers it localized in the nuclei (active form). Lipid-accumulated/atrophic fibers did not display p62-positive protein aggregates, indicating, together with the LC3-II (marker of autophagosomes) and p62-SQSTM1 analysis, that the autophagic flux is often preserved and lipophagy occurs. Conclusion In atrophic and regenerating fibers of patients with NLSD-M we observed TFEB over-expression; in other conditions autophagy markers are increased, suggesting lipophagy active role on human lipid metabolism.

Collaboration


Dive into the Giovanna Cenacchi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge