Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Di Nardo is active.

Publication


Featured researches published by Giovanna Di Nardo.


International Journal of Molecular Sciences | 2012

Optimization of the Bacterial Cytochrome P450 BM3 System for the Production of Human Drug Metabolites

Giovanna Di Nardo; Gianfranco Gilardi

Drug metabolism in human liver is a process involving many different enzymes. Among them, a number of cytochromes P450 isoforms catalyze the oxidation of most of the drugs commercially available. Each P450 isoform acts on more than one drug, and one drug may be oxidized by more than one enzyme. As a result, multiple products may be obtained from the same drug, and as the metabolites can be biologically active and may cause adverse drug reactions (ADRs), the metabolic profile of a new drug has to be known before this can be commercialized. Therefore, the metabolites of a certain drug must be identified, synthesized and tested for toxicity. Their synthesis must be in sufficient quantities to be used for metabolic tests. This review focuses on the progresses done in the field of the optimization of a bacterial self-sufficient and efficient cytochrome P450, P450 BM3 from Bacillus megaterium, used for the production of metabolites of human enzymes. The progress made in the improvement of its catalytic performance towards drugs, the substitution of the costly NADPH cofactor and its immobilization and scale-up of the process for industrial application are reported.


Analytical Chemistry | 2008

Protein and electrode engineering for the covalent immobilization of P450 BMP on gold.

Valentina E. V. Ferrero; Laura Andolfi; Giovanna Di Nardo; Sheila J. Sadeghi; Andrea Fantuzzi; Salvatore Cannistraro; Gianfranco Gilardi

Site-directed mutagenesis and functionalization of gold surfaces have been combined to obtain a stable immobilization of the heme domain of cytochrome P450 BM3 from Bacillus megaterium. Immobilization experiments were carried out using the wild type protein bearing the surface C62 and C156 and the site-directed mutants C62S, the C156S, and the double mutant C62S/C156S (no exposed cysteines). The gold surface was functionalized using two different spacers: cystamine- N-succinimidyl 3-maleimidopropionate and dithio-bismaleimidoethane, both leading to the formation of maleimide-terminated monolayers capable of covalent linkage to cysteine. Tapping mode atomic force microscopy experiments carried out on cystamine- N-succinimidyl 3-maleimidopropionate derivatized gold led to good images with expected molecular heights (5.5-6.0 nm) for the wild type and the C156S mutant. These samples also gave measurable electrochemical signals with midpoint potentials of -48 and -58 mV for the wild type and C156S, respectively. On the other hand, the dithio-bismaleimidoethane spacer led to variability on the molecular heights measured by tapping mode atomic force microscopy and the electrochemical response. This is interpreted in terms of lack of homogeneous dithio-bismaleimidoethane monolayer on gold. Furthermore, results from tapping mode atomic force microscopy show that the double mutant and the C62S did not lead to stably immobilized P450 protein, confirming the necessity of the solvent exposed C62.


PLOS ONE | 2012

Site Saturation Mutagenesis Demonstrates a Central Role for Cysteine 298 as Proton Donor to the Catalytic Site in CaHydA (FeFe)-Hydrogenase

Simone Morra; Alberto Giraudo; Giovanna Di Nardo; Paul W. King; Gianfranco Gilardi; Francesca Valetti

[FeFe]-hydrogenases reversibly catalyse molecular hydrogen evolution by reduction of two protons. Proton supply to the catalytic site (H-cluster) is essential for enzymatic activity. Cysteine 298 is a highly conserved residue in all [FeFe]-hydrogenases; moreover C298 is structurally very close to the H-cluster and it is important for hydrogenase activity. Here, the function of C298 in catalysis was investigated in detail by means of site saturation mutagenesis, simultaneously studying the effect of C298 replacement with all other 19 amino acids and selecting for mutants with high retained activity. We demonstrated that efficient enzymatic turnover was maintained only when C298 was replaced by aspartic acid, despite the structural diversity between the two residues. Purified CaHydA C298D does not show any significant structural difference in terms of secondary structure and iron incorporation, demonstrating that the mutation does not affect the overall protein fold. C298D retains the hydrogen evolution activity with a decrease of k cat only by 2-fold at pH 8.0 and it caused a shift of the optimum pH from 8.0 to 7.0. Moreover, the oxygen inactivation rate was not affected demonstrating that the mutation does not influence O2 diffusion to the active site or its reactivity with the H-cluster. Our results clearly demonstrate that, in order to maintain the catalytic efficiency and the high turnover number typical of [FeFe] hydrogenases, the highly conserved C298 can be replaced only by another ionisable residue with similar steric hindrance, giving evidence of its involvement in the catalytic function of [FeFe]-hydrogenases in agreement with an essential role in proton transfer to the active site.


Biochemistry | 2013

Structural basis for the functional roles of critical residues in human cytochrome p450 aromatase.

Jessica Lo; Giovanna Di Nardo; Jennifer Griswold; Chinaza Egbuta; Wenhua Jiang; Gianfranco Gilardi; Debashis Ghosh

Cytochrome P450 aromatase (CYP19A1) is the only enzyme known to catalyze the biosynthesis of estrogens from androgens. The crystal structure of human placental aromatase (pArom) has paved the way toward understanding the structure-function relationships of this remarkable enzyme. Using an amino terminus-truncated recombinant human aromatase (rArom) construct, we investigate the roles of key amino acids in the active site, at the intermolecular interface, inside the access channel, and at the lipid-protein boundary for their roles in enzyme function and higher-order organization. Replacing the active site residue D309 with an N yields an inactive enzyme, consistent with its proposed involvement in aromatization. Mutation of R192 at the lipid interface, pivotal to the proton relay network in the access channel, results in the loss of enzyme activity. In addition to the distal catalytic residues, we show that mutation of K440 and Y361 of the heme-proximal region critically interferes with substrate binding, enzyme activity, and heme stability. The D-E loop deletion mutant Del7 that disrupts the intermolecular interaction significantly reduces enzyme activity. However, the less drastic Del4 and point mutants E181A and E181K do not. Furthermore, native gel electrophoresis, size-exclusion chromatography, and analytical ultracentrifugation are used to show that mutations in the intermolecular interface alter the quaternary organization of the enzyme in solution. As a validation for interpretation of the mutational results in the context of the innate molecule, we determine the crystal structure of rArom to show that the active site, tertiary, and quaternary structures are identical to those of pArom.


Bioelectrochemistry | 2012

Drug–drug interactions and cooperative effects detected in electrochemically driven human cytochrome P450 3A4

Sheila J. Sadeghi; Silvia Ferrero; Giovanna Di Nardo; Gianfranco Gilardi

Inhibition of cytochrome P450-mediated drug metabolism by a concomitantly administered second drug is one of the major causes of drug-drug interactions in humans. The present study reports on the first electrochemically-driven drug-drug interactions of human cytochrome P450 3A4 probed with erythromycin, ketoconazole, cimetidine, diclofenac and quinidine. Cytochrome P450 3A4 was immobilized on glassy carbon electrodes in the presence of a cationic polyelectrolyte, PDDA (poly(diallyldimethylammonium chloride)). Inhibition of the turnover of its substrate, erythromycin, was subsequently measured using chronoamperometry at increasing concentrations of different known inhibitors of this enzyme namely ketoconazole, cimetidine and diclofenac for which IC(50) values of 135 nM, 80 μM and 311 μM were measured, respectively. Furthermore, heterotrophic cooperativity where the turnover of a first substrate is enhanced in the presence of a second one, was tested for the immobilized P450 3A4 enzyme. In this case, diclofenac 5-hydroxylation was stimulated by the presence of quinidine resulting in doubling of the potency of this inhibitor i.e. lowering the measured IC(50) of diclofenac from 311 μM down to 157 μM. The results obtained in this work confirm that bioelectrochemistry can be employed for in vitro studies of not only drug-drug interactions but also prediction of adverse drug reactions in this important P450 isozyme.


Journal of the American Chemical Society | 2010

Direct Electrochemistry of Drug Metabolizing Human Flavin-Containing Monooxygenase: Electrochemical Turnover of Benzydamine and Tamoxifen

Sheila J. Sadeghi; Rita Meirinhos; Gianluca Catucci; Vikash R. Dodhia; Giovanna Di Nardo; Gianfranco Gilardi

This communication reports on the first electrochemical study of the human flavin-containing monooxygenase 3 (hFMO3) either absorbed or covalently linked to different electrode surfaces. Glassy carbon and gold electrodes gave reversible electrochemical signals of an active hFMO3. The midpoint potential measured for the immobilized enzyme on a glassy carbon electrode was -445 +/- 8 mV (versus Ag/AgCl). A monolayer coverage was obtained on gold functionalized with dithio-bismaleimidoethane that covalently linked surface accessible cysteines of hFMO3. A structural model of the enzyme was generated to rationalize electrochemistry results. The turnover of the active enzyme was measured with two specific drugs: tamoxifen and benzydamine. For tamoxifen, 1.7 and 8.0 microM of its N-oxide product were formed by the enzyme immobilized on glassy carbon and gold electrodes, respectively. In the case of benzydamine, a K(M) of 44 +/- 5 microM was measured upon application of a -600 mV bias to the enzyme immobilized on the glassy carbon electrode that is in good agreement with the values published for microsomal hFMO3 where NADPH is the electron donor.


Biotechnology and Applied Biochemistry | 2013

Human aromatase: Perspectives in biochemistry and biotechnology

Giovanna Di Nardo; Gianfranco Gilardi

Aromatase (CYP19) is involved in steroidogenesis, catalyzing the conversion of androgens into estrogens through a unique reaction that causes the aromatization of the A ring of the steroid. The enzyme is widely distributed and well conserved among species as it plays a crucial role in physiological processes such as control of reproduction and neuroprotection. It has also been a subject of intense research both at the biotechnological level in drug development due to its involvement in estrogen‐dependent tumors and at a fundamental biochemical level because there are numerous questions regarding its reaction mechanism. This review will report the great progress made in this area.


Journal of Inorganic Biochemistry | 2013

Hydroxylation of non-substituted polycyclic aromatic hydrocarbons by cytochrome P450 BM3 engineered by directed evolution

Anastasia Sideri; Abhineet Goyal; Giovanna Di Nardo; Georgia Eleni Tsotsou; Gianfranco Gilardi

Chrysene and pyrene are known toxic compounds recalcitrant to biodegradation. Here directed evolution allowed us to identify two new mutants of cytochrome P450 BM3 that are able to hydroxylate both compounds. Random mutagenesis has been used to generate libraries of mutants of P450 BM3 active toward polycyclic aromatic hydrocarbons (PAHs) PAHs. After two rounds of error-prone PCR and backcross with parental DNA, three mutants were identified for improved activity toward pyrene and for the first time a new activity toward chrysene in comparison to the wild type enzyme. The mutants show higher affinity and coupling efficiency for chrysene with faster rates of product formation compared to the wild type. Furthermore, the mutants are able to hydroxylate chrysene in different positions, producing four metabolites, 1-, 3-, 4-, and 6-hydroxychrysene, and to hydroxylate pyrene to 1-hydroxypyrene. The majority of the mutation sites are found to be far from the active site, demonstrating the power of directed evolution in identifying mutations difficult to predict with a rational design approach. The different product profiles obtained for the different P450 BM3 mutants indicate that substrate orientation in the catalytic pocket of the protein can be modified by protein engineering. The mutants can be used for metabolic engineering for safe and cost-effective sustainable production of hydroxylated PAHs for industrial purposes as well as for the assessment of their carcinogenic activity in mammals.


Chemical Communications | 2011

Direct spectroscopic evidence for binding of anastrozole to the iron heme of human aromatase. Peering into the mechanism of aromatase inhibition.

Sara Maurelli; Mario Chiesa; Elio Giamello; Giovanna Di Nardo; Valentina E. V. Ferrero; Gianfranco Gilardi; Sabine Van Doorslaer

Aromatase (CYP19A1), is a microsomal cytochrome P450 catalysing the conversion of androgens to estrogens. Non-steroidal inhibitors, such as anastrozole, are important drugs in breast cancer therapy. Using hyperfine sublevel correlation (HYSCORE) spectroscopy we provide the first experimental evidence of the binding of anastrozole to the iron heme of human aromatase.


Journal of Biological Chemistry | 2015

Evidence for an Elevated Aspartate pKa in the Active Site of Human Aromatase

Giovanna Di Nardo; Maximilian Breitner; Andrea Bandino; Debashis Ghosh; Gareth K. Jennings; John C Hackett; Gianfranco Gilardi

Background: Crystallography and mutagenesis indicate that Asp309 is required for substrate binding and catalysis. Results: Substrate binding in aromatase is pH-dependent. Such a dependence is missing in D309N mutant. Conclusion: The apparent pKa for Asp309 is 8.2, and the residue is protonated at physiological pH. Significance: The assigned pKa indicates the role of Asp309 in proton delivery for aromatization reaction. Aromatase (CYP19A1), the enzyme that converts androgens to estrogens, is of significant mechanistic and therapeutic interest. Crystal structures and computational studies of this enzyme shed light on the critical role of Asp309 in substrate binding and catalysis. These studies predicted an elevated pKa for Asp309 and proposed that protonation of this residue was required for function. In this study, UV-visible absorption, circular dichroism, resonance Raman spectroscopy, and enzyme kinetics were used to study the impact of pH on aromatase structure and androstenedione binding. Spectroscopic studies demonstrate that androstenedione binding is pH-dependent, whereas, in contrast, the D309N mutant retains its ability to bind to androstenedione across the entire pH range studied. Neither pH nor mutation perturbed the secondary structure or heme environment. The origin of the observed pH dependence was further narrowed to the protonation equilibria of Asp309 with a parallel set of spectroscopic studies using exemestane and anastrozole. Because exemestane interacts with Asp309 based on its co-crystal structure with the enzyme, its binding is pH-dependent. Aromatase binding to anastrozole is pH-independent, consistent with the hypothesis that this ligand exploits a distinct set of interactions in the active site. In summary, we assign the apparent pKa of 8.2 observed for androstenedione binding to the side chain of Asp309. To our knowledge, this work represents the first experimental assignment of a pKa value to a residue in a cytochrome P450. This value is in agreement with theoretical calculations (7.7–8.1) despite the reliance of the computational methods on the conformational snapshots provided by crystal structures.

Collaboration


Dive into the Giovanna Di Nardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giampiero Mei

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge