Giovanna Flore
University of Cagliari
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giovanna Flore.
Brain Research | 2002
Marco Pistis; Luca Ferraro; Luigi Pira; Giovanna Flore; Sergio Tanganelli; Gian Luigi Gessa; Paola Devoto
Cannabinoid modulation of prefrontal cortex and hippocampus neuronal functioning has been correlated to the disruptive action of marijuana on memory tasks. This study investigates the effects of Δ9-tetrahydrocannabinol (Δ9-THC) on dopamine, glutamate and GABA levels in vivo by brain microdialysis in the prefrontal cortex. Δ9-THC (1 mg/kg, i.v.) significantly increased extracellular dopamine and glutamate levels and decreased GABA levels. These effects were prevented by the cannabinoid antagonist SR141716A (1 mg/kg, i.v.), which per se was ineffective. These results suggest that Δ9-THC disrupt the normal interplay between neurotransmitters in this area and may bear relevance in understanding neuronal mechanisms underlying cannabinoid-induced cognitive deficits.
Molecular Psychiatry | 2001
Paola Devoto; Giovanna Flore; Luca Pani; G.L. Gessa
The aim of this study was to determine whether extracellular dopamine (DA) in the prefrontal cortex (PFC) might originate other than from DA neurons, also from noradrenergic (NA) ones. To this aim, we compared the levels of DA and NA in the dialysates from the PFC, a cortical area innervated by NA and DA neurons, and cortices that receive NA but minor or no DA projections such as the primary motor, the occipital-retrosplenial, and the cerebellar cortex. Moreover, the effect of α2-ligands and D2-ligands that distinctly modify NA and DA neuronal activity on extracellular NA and DA in these areas was studied. Extracellular NA concentrations were found to be similar in the different cortices, as expected from the homogeneous NA innervation, however, unexpectedly, also DA concentrations in the PFC were not significantly different from those in the other cortices. The α2-adrenoceptor agonist clonidine, intraperitoneally (i.p.) injected or locally perfused into the PFC, reduced not only extracellular NA levels, as expected from its ability to inhibit NA neuron activity, but also markedly reduced extracellular DA levels. Conversely, the α2-adrenoceptor antagonist idazoxan, i.p. injected or locally perfused into the PFC, not only increased extracellular NA levels, in line with its ability to activate NA neuron activity, but also increased those of DA. Conversely, in contrast to its ability to inhibit DA neuronal activity, the D2 receptor agonist quinpirole only modestly and transiently reduced extracellular DA levels, while γ-butyrolactone failed to modify DA levels in the PFC; conversely, haloperidol, at variance from its ability to activate DA neurons, failed to significantly modify extracellular DA levels in the PFC. Both haloperidol and quinpirole were totally ineffective after local perfusion into the PFC. Systemically injected or locally perfused, clonidine and idazoxan also modified both DA and NA concentrations in dialysates from primary motor, occipital-retrosplenial and cerebellar cortices as observed in the PFC. Finally, i.p. injected or locally perfused, clonidine reduced and idazoxan increased extracellular NA levels in the caudate nucleus, but neither α2-ligand significantly modified extracellular DA levels. Our results suggest that extracellular DA in the PFC, as well as in the other cortices, may depend on NA rather than DA innervation and activity. They suggest that dialysate DA reflects the amine released from NA neurons as well, where DA acts not only as NA precursor but also as co-transmitter. The co-release of NA and DA seems to be controlled by α2-receptors located on NA nerve terminals.
Neuropsychopharmacology | 2000
Gian Luigi Gessa; Paola Devoto; Marco Diana; Giovanna Flore; Miriam Melis; Marco Pistis
The aim of the present study was to compare the effects of the typical antipsychotic haloperidol and the atypical antipsychotics clozapine and olanzapine on both extracellular dopamine (DA) levels in the medial prefrontal cortex (mPFC) as well as electrical activity of mesoprefrontal DA (mPFC-DA) neurons. Extracellular single unit recordings and microdialysis experiments were carried out in different groups of chloral hydrate anesthetised rats under identical experimental conditions. Intravenous administration of haloperidol, clozapine, and olanzapine increased the firing rate and burst activity of antidromically-identified mPFC-DA neurons; maximal increase in firing rate of approximately 140, 155, and 70 %, was produced by haloperidol, clozapine, and olanzapine at doses of 0.2, 2.5, and 1 mg/kg, i.v., respectively. Intravenous administration of the same doses increased extracellular DA levels in mPFC by 20%, 190%, and 70%, respectively. Moreover, while haloperidol and olanzapine increased extracellular levels of the deaminated DA metabolite DOPAC, by 60% and 40%, respectively, clozapine was totally ineffective. The D1 receptor antagonist SCH 23390 modified neither DA output nor neuronal firing. To determine whether the effect of the three antipsychotics on DA release might depend on a direct action on the mPFC, rats were perfused locally via inverse dialysis in the mPFC at concentrations ranging from 10−6 to 10−4M. While clozapine and olanzapine increased extracellular DA concentrations by up to 400% of basal level, haloperidol was totally ineffective. The results obtained from this study indicate that the rank potency of the three antipsychotics in stimulating the firing rate of DA neurons projecting to mPFC, correlates with their affinity for D2 receptors and doses used clinically. On the other hand, their stimulating effect on DA release does not correlate with their effect on neuronal firing but depends on a direct action on the mPFC.
Journal of Neurochemistry | 2005
Paola Devoto; Giovanna Flore; Pierluigi Saba; Mauro Fà; Gian Luigi Gessa
Our previous studies have suggested that dopamine and noradrenaline may be coreleased from noradrenergic nerve terminals in the cerebral cortex. To further clarify this issue, the effect of electrical stimulation of the locus coeruleus on extracellular noradrenaline, dopamine and DOPAC in the medial prefrontal cortex, parietal cortex and caudate nucleus was analysed by microdialysis in freely moving rats. Stimulation of the locus coeruleus for 20 min with evenly spaced pulses at 1 Hz failed to modify cortical catecholamines and DOPAC levels. Stimulation with bursts of pulses at 12 and 24 Hz increased, in a frequency‐related manner, not only noradrenaline but also dopamine and DOPAC in the two cortices. In both cortices noradrenaline returned to baseline within 20 min of stimulation, irrespective of the stimulation frequency, whereas dopamine returned to normal within 20 and 60 min in the medial prefrontal cortex and within 60 and 80 min in the parietal cortex after 12 and 24 Hz stimulation, respectively. DOPAC remained elevated throughout the experimental period. Phasic stimulation of the locus coeruleus at 12 Hz increased noradrenaline in the caudate nucleus as in the cerebral cortices but was totally ineffective on dopamine and DOPAC. Tetrodotoxin perfusion into the medial prefrontal cortex dramatically reduced noradrenaline and dopamine levels and suppressed the effect of electrical stimulation. These results indicate that electrical stimulation‐induced increase of dopamine is a nerve impulse exocytotic process and suggest that cortical dopamine and noradrenaline may be coreleased from noradrenergic terminals.
Current Neuropharmacology | 2006
Paola Devoto; Giovanna Flore
Dopamine (DA) and noradrenaline (NA) in the prefrontal cortex (PFC) modulate superior cognitive functions, and are involved in the aetiology of depressive and psychotic symptoms. Moreover, microdialysis studies in rats have shown how pharmacological treatments that induce modifications of extracellular NA in the medial PFC (mPFC), also produce parallel changes in extracellular DA.To explain the coupling of NA and DA changes, this article reviews the evidence supporting the hypothesis that extracellular DA in the cerebral cortex originates not only from dopaminergic terminals but also from noradrenergic ones, where it acts both as precursor for NA and as a co-transmitter.Accordingly, extracellular DA concentration in the occipital, parietal and cerebellar cortex was found to be much higher than expected in view of the scarce dopaminergic innervation in these areas.Systemic administration or intra-cortical perfusion of alpha(2)-adrenoceptor agonists and antagonists, consistent with their action on noradrenergic neuronal activity, produced concomitant changes not only in extracellular NA but also in DA in the mPFC, occipital and parietal cortex.Chemical modulation of the locus coeruleus by locally applied carbachol, kainate, NMDA or clonidine modified both NA and DA in the mPFC.Electrical stimulation of the locus coeruleus led to an increased efflux of both NA and DA in mPFC, parietal and occipital cortex, while in the striatum, NA efflux alone was enhanced.Atypical antipsychotics, such as clozapine and olanzapine, or antidepressants, including mirtazapine and mianserine, have been found to increase both NA and DA throughout the cerebral cortex, likely through blockade of alpha(2)-adrenoceptors. On the other hand, drugs selectively acting on dopaminergic transmission produced modest changes in extracellular DA in mPFC, and had no effect on the occipital or parietal cortex.Acute administration of morphine did not increase DA levels in the PFC (where NA is diminished), in contrast with augmented dopaminergic neuronal activity; moreover, during morphine withdrawal both DA and NA levels increased, in spite of a diminished dopaminergic activity, both increases being antagonised by clonidine but not quinpirole administration.Extensive 6-hydroxy dopamine lesion of the ventral tegmental area (VTA) decreases below 95% of control both intra- and extracellular DA and DOPAC in the nucleus accumbens, but only partially or not significantly in the mPFC and parietal cortex.The above evidence points to a common origin for NA and DA in the cerebral cortex and suggests the possible utility of noradrenergic system modulation as a target for drugs with potential clinical efficacy on cognitive functions.
Journal of Neurochemistry | 2004
Paola Devoto; Giovanna Flore; Luigi Pira; Giorgio Longu; Gian Luigi Gessa
Previous results suggest that extracellular dopamine (DA) in the rat cerebral cortex originates from dopaminergic and noradrenergic terminals. To further clarify this issue, dialysate DA, dihydroxyphenylacetic acid (DOPAC) and noradrenaline (NA) were measured both in the medial prefrontal cortex (mPFC) and in the occipital cortex (OCC), with dense and scarce dopaminergic projections, respectively. Moreover, the effect of the α2‐adrenoceptor antagonist RS 79948 and the D2‐receptor antagonist haloperidol on extracellular DA, DOPAC and NA was investigated. Extracellular DA and DOPAC concentrations in the OCC were 43% and 9%, respectively, those in the mPFC. Haloperidol (0.1 mg/kg i.p.) increased DA and DOPAC (by 35% and 150%, respectively) in the mPFC, but was ineffective in the OCC. In contrast, RS 79948 (1.5 mg/kg i.p.) increased NA, DA and DOPAC, both in the mPFC (by approximately 50%, 60% and 130%, respectively) and the OCC (by approximately 50%, 80% and 200%, respectively). Locally perfused, the DA transporter blocker GBR 12909 (10 µm) was ineffective in either cortex, whereas desipramine (DMI, 100 µm) markedly increased extracellular NA and DA in both cortices. The weak haloperidol effect on DA efflux was not enhanced after DA‐ and NA‐transporter blockade, whereas after DMI, RS 79948 markedly increased extracellular NA, and especially DA and DOPAC in both cortices. The results support the hypothesis that most extracellular DA in the cortex is co‐released with NA from noradrenergic terminals, such co‐release being primarily controlled by α2‐adrenoceptors.
Journal of Psychopharmacology | 1996
Costantino Motzo; Ml Porceddu; Giovanna Maira; Giovanna Flore; Alessandra Concas; Laura Dazzi; Giovanni Biggio
The neurosteroid allopregnanolone is a potent and efficacious modulator of γ-aminobutyric acid (GABA) type A receptors. The effects of intracerebroventricular injection of allopregnanolone (5 to 15 μg in 5 μl) on basal and stress-induced changes in the extracellular concentrations of dopamine were investigated by microdialysis in various brain areas of freely moving rats and compared with those of the benzodiazepine midazolam (1 to 10 μg in 5 μl). Allopregnanolone reduced (by a maximum of 65 to 75%) basal dopamine content in the prefrontal cortex and nucleus accumbens in a dose-dependent manner, but had no effect on dopamine output in the striatum. Allopregnanolone (10 to 15 μg) also completely prevented the increase in extracellular dopamine concentrations in the nucleus accumbens and cerebral cortex induced by foot-shock stress. Midazolam reduced basal dopamine content in all three brain regions studied as well as the stress- induced increase in dopamine content in the nucleus accumbens and cerebral cortex with a greater potency than allopregnanolone. These results suggest that endogenous neurosteroids may participate in the GABAergic modulation of dopaminergic transmission in the rat cerebral cortex and nucleus accumbens, two brain areas which are important in the regulation of emotional processes. These agents do not appear to affect striatal dopaminergic transmission which modulates motor function.
BMC Neuroscience | 2005
Paola Devoto; Giovanna Flore; Pierluigi Saba; Mauro Fà; Gian Luigi Gessa
BackgroundPrevious studies by our group suggest that extracellular dopamine (DA) and noradrenaline (NA) may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC). This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC), occipital cortex (Occ), and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats.ResultsTwenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM) markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas.A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively.In the presence of the NA transport (NAT) blocker desipramine (DMI, 100 μM), multiple LC stimulation still increased extracellular NA and DA levels.Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level.ConclusionThe results confirm and extend that LC stimulation induces a concomitant release of DA and NA in the mPFC and Occ.The different time-course of LC-induced elevation of DA and NA suggests that their co-release may be differentially controlled.
European Journal of Preventive Cardiology | 2013
Giuseppe Mercuro; Pier Paolo Bassareo; Giovanna Flore; Vassilios Fanos; Ilaria Dentamaro; Pietro Scicchitano; Nicola Laforgia; Marco Matteo Ciccone
Although the survival rate for preterm subjects has improved considerably, due to the progress in the field of perinatal medicine, preterm birth is frequently the cause underlying a series of notorious complications: morphological, neurological, ophthalmological, and renal alterations. In addition, it has recently been demonstrated how low gestational age and reduced foetal growth contribute towards an increased cardiovascular risk in preterm neonates. In fact, cardiovascular mortality is higher among former preterm adults than those born at term. This condition is referred to as cardiovascular perinatal programming. In the light of the above, an early, constant, and prolonged cardiological follow-up programme should be implemented in former preterm individuals. The aim of this paper was to perform a comprehensive literature review about two new emerging conditions predisposing to an increased cardiovascular risk: prematurity and low weight at birth.
The Journal of Neuroscience | 2012
Marco Bortolato; Sean C. Godar; Melis M; Alessio Soggiu; Paola Roncada; Angelo Casu; Giovanna Flore; Kevin Chen; Roberto Frau; Andrea Urbani; Maria Paola Castelli; Paola Devoto; Jean C. Shih
Converging evidence shows that monoamine oxidase A (MAO A), the key enzyme catalyzing serotonin (5-hydroxytryptamine; 5-HT) and norepinephrine (NE) degradation, is a primary factor in the pathophysiology of antisocial and aggressive behavior. Accordingly, male MAO A-deficient humans and mice exhibit an extreme predisposition to aggressive outbursts in response to stress. As NMDARs regulate the emotional reactivity to social and environmental stimuli, we hypothesized their involvement in the modulation of aggression mediated by MAO A. In comparison with WT male mice, MAO A KO counterparts exhibited increases in 5-HT and NE levels across all brain regions, but no difference in glutamate concentrations and NMDAR binding. Notably, the prefrontal cortex (PFC) of MAO A KO mice exhibited higher expression of NR2A and NR2B, as well as lower levels of glycosylated NR1 subunits. In line with these changes, the current amplitude and decay time of NMDARs in PFC was significantly reduced. Furthermore, the currents of these receptors were hypersensitive to the action of the antagonists of the NMDAR complex (dizocilpine), as well as NR2A (PEAQX) and NR2B (Ro 25-6981) subunits. Notably, systemic administration of these agents selectively countered the enhanced aggression in MAO A KO mice, at doses that did not inherently affect motor activity. Our findings suggest that the role of MAO A in pathological aggression may be mediated by changes in NMDAR subunit composition in the PFC, and point to a critical function of this receptor in the molecular bases of antisocial personality.