Giovanna Medeiros Tavares de Oliveira
Pontifícia Universidade Católica do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Giovanna Medeiros Tavares de Oliveira is active.
Publication
Featured researches published by Giovanna Medeiros Tavares de Oliveira.
Neurotoxicology and Teratology | 2011
Katiucia Marques Capiotti; Fabiano Peres Menezes; Luiza Reali Nazario; Julhana Bianchini Pohlmann; Giovanna Medeiros Tavares de Oliveira; Lidiane Fazenda; Maurício Reis Bogo; Carla Denise Bonan; Rosane Souza da Silva
Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase.
Journal of Inherited Metabolic Disease | 2013
Giselli Scaini; Clarissa M. Comim; Giovanna Medeiros Tavares de Oliveira; Matheus Augusto de Bittencourt Pasquali; João Quevedo; Daniel Pens Gelain; José Cláudio Fonseca Moreira; Patrícia Fernanda Schuck; Gustavo C. Ferreira; Maurício Reis Bogo; Emilio L. Streck
Maple syrup urine disease (MSUD) is a neurometabolic disorder that leads to the accumulation of branched-chain amino acids (BCAAs) and their α-keto branched-chain by-products. Because the neurotoxic mechanisms of MSUD are poorly understood, this study aimed to evaluate the effects of chronic administration of a BCAA pool (leucine, isoleucine and valine). This study examined the effects of BCAA administration on spatial memory and the levels of brain-derived neurotrophic factor (BNDF). We examined both pro-BDNF and bdnf mRNA expression levels after administration of BCAAs. Furthermore, this study examined whether antioxidant treatment prevented the alterations induced by BCAA administration. Our results demonstrated an increase in BDNF in the hippocampus and cerebral cortex, accompanied by memory impairment in spatial memory tasks. Additionally, chronic administration of BCAAs did not induce a detectable change in pro-BDNF levels. Treatment with N-acetylcysteine and deferoxamine prevented both the memory deficit and the increase in the BDNF levels induced by BCAA administration. In conclusion, these results suggest that when the brain is chronically exposed to high concentrations of BCAA (at millimolar concentrations) an increase in BDNF levels occurs. This increase in BDNF may be related to the impairment of spatial memory. In addition, we demonstrated that antioxidant treatment prevented the negative consequences related to BCAA administration, suggesting that oxidative stress might be involved in the pathophysiological mechanism(s) underlying the brain damage observed in MSUD.
Neurochemistry International | 2012
Gabriela K. Ferreira; Milena Carvalho-Silva; Cinara L. Gonçalves; Júlia S. Vieira; Giselli Scaini; Fernando V. Ghedim; Pedro F. Deroza; Alexandra I. Zugno; Talita Carneiro Brandão Pereira; Giovanna Medeiros Tavares de Oliveira; Luiza Wilges Kist; Maurício Reis Bogo; Patrícia Fernanda Schuck; Gustavo C. Ferreira; Emilio L. Streck
Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellmans method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II.
Molecular Neurobiology | 2012
Giselli Scaini; Natália Rochi; Isabela C. Jeremias; Pedro F. Deroza; Alexandra I. Zugno; Talita Carneiro Brandão Pereira; Giovanna Medeiros Tavares de Oliveira; Luiza Wilges Kist; Maurício Reis Bogo; Patrícia Fernanda Schuck; Gustavo C. Ferreira; Emilio L. Streck
Maple syrup urine disease is an inherited metabolic disease predominantly characterized by neurological dysfunction. However, the mechanisms underlying the neuropathology of this disease are still not defined. Therefore, the aim of this study was to investigate the effect of acute and chronic administration of a branched-chain amino acids (BCAA) pool (leucine, isoleucine, and valine) on acetylcholinesterase (AChE) activity and gene expression in the brain and serum of rats and to assess if antioxidant treatment prevented the alterations induced by BCAA administration. Our results show that the acute administration of a BCAA pool in 10- and 30-day-old rats increases AChE activity in the cerebral cortex, striatum, hippocampus, and serum. Moreover, chronic administration of the BCAA pool also increases AChE activity in the structures studied, and antioxidant treatment prevents this increase. In addition, we show a significant decrease in the mRNA expression of AChE in the hippocampus following acute administration in 10- and 30-day-old rats. On the other hand, AChE expression increased significantly after chronic administration of the BCAA pool. Interestingly, the antioxidant treatment was able to prevent the increased AChE activity without altering AChE expression. In conclusion, the results from the present study demonstrate a marked increase in AChE activity in all brain structures following the administration of a BCAA pool. Moreover, the increased AChE activity is prevented by the coadministration of N-acetylcysteine and deferoxamine as antioxidants.
Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2014
Giovanna Medeiros Tavares de Oliveira; Luiza Wilges Kist; Talita Carneiro Brandão Pereira; Josiane Woutheres Bortolotto; Francisco Lima Paquete; Elisa Magno Nunes de Oliveira; Carlos Eduardo Leite; Carla Denise Bonan; Nara Regina de Souza Basso; Ricardo Meurer Papaléo; Maurício Reis Bogo
Superparamagnetic iron oxide nanoparticles (SPIONs) are of great interest in nanomedicine due to their capability to act simultaneously as a contrast agent and as a targeted drug delivery system. At present, one of the biggest concerns about the use of SPIONs remains around its toxicity and, for this reason, it is important to establish the safe upper limit for each use. In the present study, SPION coated with cross-linked aminated dextran (CLIO-NH₂) were synthesized and their toxicity to zebrafish brain was investigated. We have evaluated the effect of different CLIO-NH₂ doses (20, 50, 100, 140 and 200 mg/kg) as a function of time after exposure (one, 16, 24 and 48 h) on AChE activity and ache expression in zebrafish brain. The animals exposed to 200 mg/kg and tested 24 h after administration of the nanoparticles have shown decreased AChE activity, reduction in the exploratory performance, significantly higher level of ferric iron in the brains and induction of casp8, casp 9 and jun genes. Taken together, these findings suggest acute brain toxicity by the inhibition of acetylcholinesterase and induction of apoptosis.
Molecular Neurobiology | 2016
Macedo Lw; Cararo Jh; Maravai Sg; Cinara L. Gonçalves; Giovanna Medeiros Tavares de Oliveira; Luiza Wilges Kist; Guerra Martinez C; Kurtenbach E; Maurício Reis Bogo; Hipkiss Ar; Emilio L. Streck; Patrícia Fernanda Schuck; Gustavo C. Ferreira
Carnosine (β-alanyl-l-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I–III and II–III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders.
Memorias Do Instituto Oswaldo Cruz | 2015
Patrícia de Brum Vieira; Nícolas Luiz Feijó Silva; Luiza Wilges Kist; Giovanna Medeiros Tavares de Oliveira; Maurício Reis Bogo; Geraldo A De Carli; Alexandre José Macedo; Tiana Tasca
Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalis isolates from female and male patients were evaluated. Iron from different sources sustained T. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.
Journal of Nutritional Biochemistry | 2016
Naiara Stefanello; Roberta Schmatz; Luciane Belmonte Pereira; Andréia Machado Cardoso; Sabina Passamonti; Roselia Maria Spanevello; Gustavo R. Thomé; Giovanna Medeiros Tavares de Oliveira; Luiza Wilges Kist; Maurício Reis Bogo; Vera Maria Morsch; Maria Rosa Chitolina Schetinger
We evaluated the effect of chlorogenic acid (CGA), caffeine (CA) and coffee (CF) on components of the purinergic system from the cerebral cortex and platelets of streptozotocin-induced diabetic rats. Animals were divided into eight groups: control animals treated with (I) water (WT), (II) CGA (5 mg/kg), (III) CA (15 mg/kg) and (IV) CF (0.5 g/kg), and diabetic animals treated with (V) WT, (VI) CGA (5 mg/kg), (VII) CA (15 mg/kg) and (VIII) CF (0.5 g/kg). Our results showed an increase (173%) in adenosine monophosphate (AMP) hydrolysis in the cerebral cortex of diabetic rats. In addition, CF treatment increased adenosine diphosphate (ADP) and AMP hydrolysis in group VIII synaptosomes. Platelets showed an increase in ectonucleotidase activity in group V, and all treatments reduced the increase in adenosine triphosphate and ADP hydrolysis. Furthermore, there was an increase in platelet aggregation of 72% in the diabetic rats, and CGA and CF treatment reduced platelet aggregation by nearly 60% when compared to diabetic rats. In this context, we can suggest that CGA and CF treatment should be considered a therapeutic and scientific target to be investigated in diseases associated with hyperglycemia.
Intensive Care Medicine Experimental | 2014
Larissa Constantino; Renata C. Gonçalves; Vinícius Renê Giombelli; Cristiane Damiani Tomasi; Francieli Vuolo; Luiza Wilges Kist; Giovanna Medeiros Tavares de Oliveira; Matheus Augusto de Bittencourt Pasquali; Maurício Reis Bogo; Thais Mauad; Adolfo Horn; Karen V. Melo; Christiane Fernandes; José Cláudio Fonseca Moreira; Cristiane Ritter; Felipe Dal-Pizzol
Molecular Neurobiology | 2014
Gabriela K. Ferreira; Giselli Scaini; Isabela C. Jeremias; Milena Carvalho-Silva; Cinara L. Gonçalves; Talita Carneiro Brandão Pereira; Giovanna Medeiros Tavares de Oliveira; Luiza Wilges Kist; Maurício Reis Bogo; Patrícia Fernanda Schuck; Gustavo C. Ferreira; Emilio L. Streck
Collaboration
Dive into the Giovanna Medeiros Tavares de Oliveira's collaboration.
Talita Carneiro Brandão Pereira
Pontifícia Universidade Católica do Rio Grande do Sul
View shared research outputs