Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Musco is active.

Publication


Featured researches published by Giovanna Musco.


Cell | 1996

Three−dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome

Giovanna Musco; Gunter Stier; Catherine Joseph; Maria A. Castiglione Morelli; Michael Nilges; Toby J. Gibson; Annalisa Pastore

The KH module is a sequence motif found in a number of proteins that are known to be in close association with RNA. Experimental evidence suggests a direct involvement of KH in RNA binding. The human FMR1 protein, which has two KH domains, is associated with fragile X syndrome, the most common inherited cause of mental retardation. Here we present the three-dimensional solution structure of the KH module. The domain consists of a stable beta alpha alpha beta beta alpha fold. On the basis of our results, we suggest a potential surface for RNA binding centered on the loop between the first two helices. Substitution of a well-conserved hydrophobic residue located on the second helix destroys the KH fold; a mutation of this position in FMR1 leads to an aggravated fragile X phenotype.


Journal of Biomolecular NMR | 2000

Solution NMR of proteins within polyacrylamide gels: Diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes

Hans-Jürgen Sass; Giovanna Musco; Stephen J. Stahl; Paul T. Wingfield; Stephan Grzesiek

The diffusive properties of biomacromolecules within the aqueous phase of polyacrylamide gels are described. High quality NMR spectra can be obtained under such conditions. As compared to water, a fivefold reduction in the translational diffusion constant, but only a 1.6-fold decrease (1.4-fold increase) in amide-15N T2 (T1) are observed for human ubiquitin within a 10% acrylamide gel. Weak alignment of the solute macromolecules can be achieved within such gels by vertical or radial compression or by the embedding of magnetically oriented purple membrane fragments. The methods are applied to derive residual dipolar couplings for human HIV-1 Nef and ubiquitin.


EMBO Reports | 2008

The autoimmune regulator PHD finger binds to non-methylated histone H3K4 to activate gene expression

Tõnis Org; Francesca Chignola; Csaba Hetényi; Massimiliano Gaetani; Ana Rebane; Ingrid Liiv; Uko Maran; Luca Mollica; Matthew J. Bottomley; Giovanna Musco; Pärt Peterson

Mutations in the gene autoimmune regulator (AIRE) cause autoimmune polyendocrinopathy candidiasis ectodermal dystrophy. AIRE is expressed in thymic medullary epithelial cells, where it promotes the expression of tissue‐restricted antigens. By the combined use of biochemical and biophysical methods, we show that AIRE selectively interacts with histone H3 through its first plant homeodomain (PHD) finger (AIRE–PHD1) and preferentially binds to non‐methylated H3K4 (H3K4me0). Accordingly, in vivo AIRE binds to and activates promoters containing low levels of H3K4me3 in human embryonic kidney 293 cells. We conclude that AIRE–PHD1 is an important member of a newly identified class of PHD fingers that specifically recognize H3K4me0, thus providing a new link between the status of histone modifications and the regulation of tissue‐restricted antigen expression in thymus.


Biochimie | 2013

The stem cell secretome and its role in brain repair

Denise Drago; Chiara Cossetti; Nunzio Iraci; Edoardo Gaude; Giovanna Musco; Angela Bachi; Stefano Pluchino

Compelling evidence exists that non-haematopoietic stem cells, including mesenchymal (MSCs) and neural/progenitor stem cells (NPCs), exert a substantial beneficial and therapeutic effect after transplantation in experimental central nervous system (CNS) disease models through the secretion of immune modulatory or neurotrophic paracrine factors. This paracrine hypothesis has inspired an alternative outlook on the use of stem cells in regenerative neurology. In this paradigm, significant repair of the injured brain may be achieved by injecting the biologics secreted by stem cells (secretome), rather than implanting stem cells themselves for direct cell replacement. The stem cell secretome (SCS) includes cytokines, chemokines and growth factors, and has gained increasing attention in recent years because of its multiple implications for the repair, restoration or regeneration of injured tissues. Thanks to recent improvements in SCS profiling and manipulation, investigators are now inspired to harness the SCS as a novel alternative therapeutic option that might ensure more efficient outcomes than current stem cell-based therapies for CNS repair. This review discusses the most recent identification of MSC- and NPC-secreted factors, including those that are trafficked within extracellular membrane vesicles (EVs), and reflects on their potential effects on brain repair. It also examines some of the most convincing advances in molecular profiling that have enabled mapping of the SCS.


Structure | 2000

Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin

Giovanna Musco; Gunter Stier; Bernhard Kolmerer; Salvatore Adinolfi; Stephen R. Martin; Tom A. Frenkiel; Toby J. Gibson; Annalisa Pastore

BACKGROUND Lesions in the gene for frataxin, a nuclear-encoded mitochondrial protein, cause the recessively inherited condition Friedreichs ataxia. It is thought that the condition arises from disregulation of mitochondrial iron homeostasis, with concomitant oxidative damage leading to neuronal death. Very little is, as yet, known about the biochemical function of frataxin. RESULTS Here, we show that the mature form of recombinant frataxin behaves in solution as a monodisperse species that is composed of a 15-residue-long unstructured N terminus and an evolutionarily conserved C-terminal region that is able to fold independently. The structure of the C-terminal domain consists of a stable seven-stranded antiparallel beta sheet packing against a pair of parallel helices. The structure is compact with neither grooves nor cavities, features that are typical of iron-binding modules. Exposed evolutionarily conserved residues cover a broad area and all cluster on the beta-sheet face of the structure, suggesting that this is a functionally important surface. The effect of two clinically occurring mutations on the fold was checked experimentally. When the mature protein was titrated with iron, no tendency to iron-binding or to aggregation was observed. CONCLUSIONS Knowledge of the frataxin structure provides important guidelines as to the nature of the frataxin binding partner. The absence of all the features expected for an iron-binding activity, the large conserved area on its surface and lack of evidence for iron-binding activity strongly support an indirect involvement of frataxin in iron metabolism. The effects of point mutations associated with Friedreichs ataxia can be rationalised by knowledge of the structure and suggest possible models for the occurrence of the disease in compound heterozygous patients.


Nature Medicine | 2013

Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy.

Isaline Rowe; Marco Chiaravalli; Valeria Mannella; Valeria Ulisse; Giacomo Quilici; Monika Pema; Xuewen W Song; Hangxue Xu; Silvia Mari; Feng Qian; York Pei; Giovanna Musco; Alessandra Boletta

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral renal cyst formation. Recent identification of signaling cascades deregulated in ADPKD has led to the initiation of several clinical trials, but an approved therapy is still lacking. Using a metabolomic approach, we identify a pathogenic pathway in this disease that can be safely targeted for therapy. We show that mutation of PKD1 results in enhanced glycolysis in cells in a mouse model of PKD and in kidneys from humans with ADPKD. Glucose deprivation resulted in lower proliferation and higher apoptotic rates in PKD1-mutant cells than in nondeprived cells. Notably, two distinct PKD mouse models treated with 2-deoxyglucose (2DG), to inhibit glycolysis, had lower kidney weight, volume, cystic index and proliferation rates as compared to nontreated mice. These metabolic alterations depend on the extracellular signal-related kinase (ERK) pathway acting in a dual manner by inhibiting the liver kinase B1 (LKB1)–AMP-activated protein kinase (AMPK) axis on the one hand while activating the mTOR complex 1 (mTORC1)-glycolytic cascade on the other. Enhanced metabolic rates further inhibit AMPK. Forced activation of AMPK acts in a negative feedback loop, restoring normal ERK activity. Taken together, these data indicate that defective glucose metabolism is intimately involved in the pathobiology of ADPKD. Our findings provide a strong rationale for a new therapeutic strategy using existing drugs, either individually or in combination.


Trends in Neurosciences | 1996

Friedreich's ataxia protein: phylogenetic evidence for mitochondrial dysfunction

Toby J. Gibson; Eugene V. Koonin; Giovanna Musco; Annalisa Pastore; Peer Bork

Friedreichs ataxia is the most common inherited spinocerebellar ataxia. A decade of linkage and physical mapping studies have culminated in the identification of the Friedreichs ataxia gene. The presence of homologues in purple bacterial genomes, but not in other bacteria, allows us to infer a mitochondrial location for frataxin (Friedreichs ataxia protein) on the basis of bacterial phylogeny. Frataxin possesses a non-globular N-terminus domain providing a candidate mitochondrial targeting peptide. Clues to the function of frataxin are provided by the mitochondrial location, a clinically similar ataxia with vitamin E deficiency, and certain neuropathies with mitochondrial DNA instability caused by mutations in nuclear genes.


RNA | 1999

Dissecting FMR1, the protein responsible for fragile X syndrome, in its structural and functional domains

Salvatore Adinolfi; Claudia Bagni; Giovanna Musco; Toby J. Gibson; Lelio Mazzarella; Annalisa Pastore

FMR1 is an RNA-binding protein that is either absent or mutated in patients affected by the fragile X syndrome, the most common inherited cause of mental retardation in humans. Sequence analysis of the FMR1 protein has suggested that RNA binding is related to the presence of two K-homologous (KH) modules and an RGG box. However, no attempt has been so far made to map the RNA-binding sites along the protein sequence and to identify possible differential RNA-sequence specificity. In the present article, we describe work done to dissect FMR1 into regions with structurally and functionally distinct properties. A semirational approach was followed to identify four regions: an N-terminal stretch of 200 amino acids, the two KH regions, and a C-terminal stretch. Each region was produced as a recombinant protein, purified, and probed for its state of folding by spectroscopical techniques. Circular dichroism and NMR spectra of the N-terminus show formation of secondary structure with a strong tendency to aggregate. Of the two homologous KH motifs, only the first one is folded whereas the second remains unfolded even when it is extended both N- and C-terminally. The C-terminus is, as expected from its amino acid composition, nonglobular. Binding assays were then performed using the 4-nt homopolymers. Our results show that only the first KH domain but not the second binds to RNA, and provide the first direct evidence for RNA binding of both the N-terminal and the C-terminal regions. RNA binding for the N-terminus could not be predicted from sequence analysis because no known RNA-binding motif is identifiable in this region. Different sequence specificity was observed for the fragments: both the N-terminus of the protein and KH1 bind preferentially to poly-(rG). The C-terminal region, which contains the RGG box, is nonspecific, as it recognizes the bases with comparable affinity. We therefore conclude that FMR1 is a protein with multiple sites of interaction with RNA: sequence specificity is most likely achieved by the whole block that comprises the first approximately 400 residues, whereas the C-terminus provides a nonspecific binding surface.


Nucleic Acids Research | 2009

The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation

Francesca Chignola; Massimiliano Gaetani; Ana Rebane; Tõnis Org; Luca Mollica; Chiara Zucchelli; Andrea Spitaleri; Valeria Mannella; Pärt Peterson; Giovanna Musco

Plant homeodomain (PHD) fingers are often present in chromatin-binding proteins and have been shown to bind histone H3 N-terminal tails. Mutations in the autoimmune regulator (AIRE) protein, which harbours two PHD fingers, cause a rare monogenic disease, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). AIRE activates the expression of tissue-specific antigens by directly binding through its first PHD finger (AIRE-PHD1) to histone H3 tails non-methylated at K4 (H3K4me0). Here, we present the solution structure of AIRE-PHD1 in complex with H3K4me0 peptide and show that AIRE-PHD1 is a highly specialized non-modified histone H3 tail reader, as post-translational modifications of the first 10 histone H3 residues reduce binding affinity. In particular, H3R2 dimethylation abrogates AIRE-PHD1 binding in vitro and reduces the in vivo activation of AIRE target genes in HEK293 cells. The observed antagonism by R2 methylation on AIRE-PHD1 binding is unique among the H3K4me0 histone readers and represents the first case of epigenetic negative cross-talk between non-methylated H3K4 and methylated H3R2. Collectively, our results point to a very specific histone code responsible for non-modified H3 tail recognition by AIRE-PHD1 and describe at atomic level one crucial step in the molecular mechanism responsible for antigen expression in the thymus.


Journal of Biological Chemistry | 2008

Structural Basis for the Interaction of isoDGR with the RGD-binding Site of αvβ3 Integrin

Andrea Spitaleri; Silvia Mari; Flavio Curnis; Catia Traversari; Renato Longhi; Claudio Bordignon; Angelo Corti; Gian Paolo Rizzardi; Giovanna Musco

Asparagine deamidation at the NGR sequence in the 5th type I repeat of fibronectin (FN-I5) generates isoDGR, an αvβ3 integrin-binding motif regulating endothelial cell adhesion and proliferation. By NMR and molecular dynamics studies, we analyzed the structure of CisoDGRC (isoDGR-2C), a cyclic β-peptide mimicking the FN-I5 site, and compared it with NGR, RGD, or DGR-containing cyclopeptides. Docking experiments show that isoDGR, exploiting an inverted orientation as compared with RGD, favorably interacts with the RGD-binding site of αvβ3, both recapitulating canonical RGD-αvβ3 contacts and establishing additional polar interactions. Conversely, NGR and DGR motifs lack the fundamental pharmacophoric requirements for high receptor affinity. Therefore, unlike NGR and DGR, isoDGR is a new natural recognition motif of the RGD-binding pocket of αvβ3. These findings contribute to explain the different functional properties of FN-I5 before and after deamidation, and provide support for the hypothesis that NGR → isoDGR transition can work as a molecular timer for activating latent integrin-binding sites in proteins, thus regulating protein function.

Collaboration


Dive into the Giovanna Musco's collaboration.

Top Co-Authors

Avatar

Andrea Spitaleri

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Michela Ghitti

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Giacomo Quilici

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Marco Bianchi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Zucchelli

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Silvia Mari

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Toby J. Gibson

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge