Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanna Tabellini is active.

Publication


Featured researches published by Giovanna Tabellini.


Leukemia | 2006

Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia.

A M Martelli; Maria Nyakern; Giovanna Tabellini; Roberta Bortul; P L Tazzari; Camilla Evangelisti; Lucio Cocco

The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway is crucial to many aspects of cell growth, survival and apoptosis, and its constitutive activation has been implicated in the both the pathogenesis and the progression of a wide variety of neoplasias. Hence, this pathway is an attractive target for the development of novel anticancer strategies. Recent studies showed that PI3K/Akt signaling is frequently activated in acute myeloid leukemia (AML) patient blasts and strongly contributes to proliferation, survival and drug resistance of these cells. Upregulation of the PI3K/Akt network in AML may be due to several reasons, including FLT3, Ras or c-Kit mutations. Small molecules designed to selectively target key components of this signal transduction cascade induce apoptosis and/or markedly increase conventional drug sensitivity of AML blasts in vitro. Thus, inhibitory molecules are currently being developed for clinical use either as single agents or in combination with conventional therapies. However, the PI3K/Akt pathway is important for many physiological cellular functions and, in particular, for insulin signaling, so that its blockade in vivo might cause severe systemic side effects. In this review, we summarize the existing knowledge about PI3K/Akt signaling in AML cells and we examine the rationale for targeting this fundamental signal transduction network by means of selective pharmacological inhibitors.


Leukemia | 2003

A new selective AKT pharmacological inhibitor reduces resistance to chemotherapeutic drugs, TRAIL, all-trans-retinoic acid, and ionizing radiation of human leukemia cells

A M Martelli; P L Tazzari; Giovanna Tabellini; Roberta Bortul; Anna Maria Billi; Lucia Manzoli; A Ruggeri; Roberto Conte; Lucio Cocco

It is now well established that the reduced capacity of tumor cells of undergoing cell death through apoptosis plays a key role both in the pathogenesis of cancer and in therapeutic treatment failure. Indeed, tumor cells frequently display multiple alterations in signal transduction pathways leading to either cell survival or apoptosis. In mammals, the pathway based on phosphoinositide 3-kinase (PI3K)/Akt conveys survival signals of extreme importance and its downregulation, by means of pharmacological inhibitors of PI3K, considerably lowers resistance to various types of therapy in solid tumors. We recently described an HL60 leukemia cell clone (HL60AR cells) with a constitutively active PI3K/Akt pathway. These cells were resistant to multiple chemotherapeutic drugs, all-trans-retinoic acid (ATRA), and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Treatment with two pharmacological inhibitors of PI3K, wortmannin and Ly294002, restored sensitivity of HL60AR cells to the aforementioned treatments. However, these inhibitors have some drawbacks that may severely limit or impede their clinical use. Here, we have tested whether or not a new selective Akt inhibitor, 1L-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (Akt inhibitor), was as effective as Ly294002 in lowering the sensitivity threshold of HL60 cells to chemotherapeutic drugs, TRAIL, ATRA, and ionizing radiation. Our findings demonstrate that, at a concentration which does not affect PI3K activity, the Akt inhibitor markedly reduced resistance of HL60AR cells to etoposide, cytarabine, TRAIL, ATRA, and ionizing radiation. This effect was likely achieved through downregulation of expression of antiapoptotic proteins such as c-IAP1, c-IAP2, cFLIPL, and of Bad phosphorylation on Ser 136. The Akt inhibitor did not influence PTEN activity. At variance with Ly294002, the Akt inhibitor did not negatively affect phosphorylation of protein kinase C-ζ and it was less effective in downregulating p70S6 kinase (p70S6K) activity. The Akt inhibitor increased sensitivity to apoptotic inducers of K562 and U937, but not of MOLT-4, leukemia cells. Overall, our results indicate that selective Akt pharmacological inhibitors might be used in the future for enhancing the sensitivity of leukemia cells to therapeutic treatments that induce apoptosis or for overcoming resistance to these treatments.


Journal of Cellular Biochemistry | 2001

Nuclear apoptotic changes: An overview

Alberto M. Martelli; Marina Zweyer; Robert L. Ochs; Pier Luigi Tazzari; Giovanna Tabellini; Paola Narducci; Roberta Bortul

Apoptosis is a form of active cell death essential for morphogenesis, development, differentiation, and homeostasis of multicellular organisms. The activation of genetically controlled specific pathways that are highly conserved during evolution results in the characteristic morphological features of apoptosis that are mainly evident in the nucleus. These include chromatin condensation, nuclear shrinkage, and the formation of apoptotic bodies. The morphological changes are the result of molecular alterations, such as DNA and RNA cleavage, post‐translational modifications of nuclear proteins, and proteolysis of several polypeptides residing in the nucleus. During the last five years our understanding of the process of apoptosis has dramatically increased. However, the mechanisms that lead to apoptotic changes in the nucleus have been only partially clarified. Here, we shall review the most recent findings that may explain why the nucleus displays these striking modifications. Moreover, we shall take into consideration the emerging evidence about apoptotic events as a trigger for the generation of autoantibodies to nuclear components. J. Cell. Biochem. 82: 634–646, 2001.


Leukemia | 2007

The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion.

P L Tazzari; Giovanna Tabellini; Roberta Bortul; Veronica Papa; Camilla Evangelisti; Tiziana Grafone; Giovanni Martinelli; James A. McCubrey; A M Martelli

Insulin-like growth factor-I (IGF-I) and its receptor (IGF-IR) have been implicated in the pathophysiology of many human cancers, including those of hematopoietic lineage. We investigated the therapeutic potential of the novel IGF-IR tyrosine kinase activity inhibitor, NVP-AEW541, on human acute myeloid leukemia (AML) cells. NVP-AEW541 was tested on a HL60 cell subclone, which is dependent on autocrine secretion of IGF-I for survival and drug resistance, as well as primary drug resistant leukemia cells. NVP-AEW541 treatment (24u2009h) induced dephosphorylation of IGF-IR. NVP-AEW541 also caused Akt dephosphorylation and changes in the expression of key regulatory proteins of the cell cycle. At longer incubation times (48u2009h), NVP-AEW541-induced apoptotic cell death, as demonstrated by caspase-3 cleavage. Apoptosis was accompanied by decreased expression of anti-apoptotic proteins. NVP-AEW541 enhanced sensitivity of HL60 cells to either cytarabine or etoposide. Moreover, NVP-AEW541 reduced the clonogenic capacity of AML CD34+ cells cultured in the presence of IGF-I. Chemoresistant AML blasts displayed enhanced IGF-I secretion, and were sensitized to etoposide-induced apoptosis by NVP-AEW541. Our findings indicate that NVP-AEW541 might be a promising therapeutic agent for the treatment of those AML cases characterized by IGF-I autocrine secretion.


Leukemia | 2003

The phosphoinositide 3-kinase/Akt pathway regulates cell cycle progression of HL60 human leukemia cells through cytoplasmic relocalization of the cyclin-dependent kinase inhibitor p27(Kip1) and control of cyclin D1 expression.

Alessandra Cappellini; Giovanna Tabellini; Marina Zweyer; Roberta Bortul; P L Tazzari; Am Billi; Federica Falà; Lucio Cocco; A M Martelli

The serine/threonine protein kinase Akt, a downstream effector of phosphoinositide 3-kinase (PI3K), plays a pivotal role in tumorigenesis because it affects the growth and survival of cancer cells. Several laboratories have demonstrated that Akt inhibits transcriptional activation of a number of related forkhead transcription factors now referred to as FoxO1, FoxO3, and FoxO4. Akt-regulated forkhead transcription factors are involved in the control of the expression of both the cyclin-dependent kinase (cdk) inhibitor p27Kip1 and proapoptotic Bim protein. Very little information is available concerning the importance of the PI3K/Akt pathway in HL60 human leukemia cells. Here, we present our findings showing that the PI3K/Akt axis regulates cell cycle progression of HL60 cells through multiple mechanisms also involving the control of FoxO1 and FoxO3. To this end, we took advantage of a HL60 cell clone (HL60AR cells) with a constitutively activated PI3K/Akt axis. When compared with parental (PT) HL60 cells, HL60AR cells displayed higher levels of phosphorylated FoxO1 and FoxO3. In AR cells forkhead factors localized predominantly in the cytoplasm, whereas in PT cells they were mostly nuclear. AR cells proliferated faster than PT cells and showed a lower amount of the cdk inhibitor p27Kip1, which was mainly found in the cytoplasm and was hyperphosphorylated on threonine residues. AR cells also displayed higher levels of cyclin D1 and phosphorylated p110 Retinoblastoma protein. The protein levels of cdk2, cdk4, and cdk6 were not altered in HL60AR cells, whereas the activities of both ckd2 and cdk6 were higher in AR than in PT cells. These results show that in HL60 cells the PI3K/Akt signaling pathway may be involved in the control of the cell cycle progression most likely through mechanisms involving the activation of forkhead transcription factors.


Leukemia | 2014

Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential

Luca M. Neri; Alice Cani; A M Martelli; Carolina Simioni; C Junghanss; Giovanna Tabellini; Francesca Ricci; P L Tazzari; Pasqualepaolo Pagliaro; James A. McCubrey; Silvano Capitani

B-precursor acute lymphoblastic leukemia (B-pre ALL) is a malignant disorder characterized by the abnormal proliferation of B-cell progenitors. The prognosis of B-pre ALL has improved in pediatric patients, but the outcome is much less successful in adults. Constitutive activation of the phosphatidylinositol 3-kinase (PI3K), Akt and the mammalian target of rapamycin (mTOR) (PI3K/Akt/mTOR) network is a feature of B-pre ALL, where it strongly influences cell growth and survival. RAD001, a selective mTORC1 inhibitor, has been shown to be cytotoxic against many types of cancer including hematological malignancies. To investigate whether mTORC1 could represent a target in the therapy of B-pre ALL, we treated cell lines and adult patient primary cells with RAD001. We documented that RAD001 decreased cell viability, induced cell cycle arrest in G0/G1 phase and caused apoptosis in B-pre ALL cell lines. Autophagy was also induced, which was important for the RAD001 cytotoxic effect, as downregulation of Beclin-1 reduced drug cytotoxicity. RAD001 strongly synergized with the novel allosteric Akt inhibitor MK-2206 in both cell lines and patient samples. Similar results were obtained with the combination CCI-779 plus GSK 690693. These findings point out that mTORC1 inhibitors, either as a single agent or in combination with Akt inhibitors, could represent a potential therapeutic innovative strategy in B-pre ALL.


FEBS Letters | 2001

Re-examination of the mechanisms regulating nuclear inositol lipid metabolism

Alberto M. Martelli; Roberta Bortul; Giovanna Tabellini; Michela Aluigi; Daniela Peruzzi; Renato Bareggi; Paola Narducci; Lucio Cocco

Although inositol lipids constitute only a very minor proportion of total cellular lipids, they have received immense attention by scientists since it was discovered that they play key roles in a wide range of important cellular processes. In the late 1980s, it was suggested that these lipids are also present within the cell nucleus. Albeit the early reports about the intranuclear localization of phosphoinositides were met by skepticism and disbelief, compelling evidence has subsequently been accumulated convincingly showing that a phosphoinositide cycle is present at the nuclear level and may be activated in response to stimuli that do not activate the inositol lipid metabolism localized at the plasma membrane. Very recently, intriguing new data have highlighted that some of the mechanisms regulating nuclear inositol lipid metabolism differ in a substantial way from those operating at the cell periphery. Here, we provide an overview of recent findings regarding the regulation of both nuclear phosphatidylinositol 3‐kinase and phosphoinositide‐specific phospholipase C‐β1.


Journal of Cellular Biochemistry | 1999

Insulin-like growth factor-I-dependent stimulation of nuclear phospholipase C-?1 activity in Swiss 3T3 cells requires an intact cytoskeleton and is paralleled by increased phosphorylation of the phospholipase

Alberto M. Martelli; Lucio Cocco; Renato Bareggi; Giovanna Tabellini; Riccardo Rizzoli; Maria Dora Ghibellini; Paola Narducci

Swiss 3T3 mouse fibroblasts were exposed to 10 μM colchicine to disrupt microtubules, then stimulated with insulin‐like growth factor‐I. Immunoprecipitation experiments showed that insulin‐like growth factor‐I receptor and insulin receptor substrate‐1 were tyrosine phosphorylated to the same extent in both cells treated with colchicine and in those not exposed to the drug. Moreover, the activity of phosphatidylinositol 3‐kinase was not affected by incubation with colchicine. While in nuclei prepared from cells not exposed to colchicine it was possible to detect an insulin‐like growth factor‐I‐dependent increase in the mass of diacylglycerol, as well as stimulation of phospholipase C activity, no similar changes were observed in nuclei obtained from cells treated with colchicine. Activation of the nuclear phospholipase activity was paralleled by an increase of its phosphorylation. Immunofluorescent studies revealed that mitogen‐activated protein kinase did not translocate towards the nucleus when the cytoskeleton was depolymerized. These results show that in Swiss 3T3 cells some as yet unknown events necessary for the insulin‐like growth factor‐I‐dependent activation of nuclear polyphosphoinositide metabolism require the presence of an intact cytoskeleton and are situated down‐stream the activation of insulin receptor substrate‐1 and phosphatidylinositol 3‐kinase. Activation of nuclear phospholipase C‐β1 might be linked to its phosphorylation and translocation of mitogen‐activated protein kinase to the nucleus. J. Cell. Biochem. 72:339–348, 1999.


Journal of Cellular Biochemistry | 2001

Nuclear changes in necrotic HL-60 cells

Roberta Bortul; Marina Zweyer; Anna Maria Billi; Giovanna Tabellini; Robert L. Ochs; Renato Bareggi; Lucio Cocco; Alberto M. Martelli

Cell death in eukaryotes can occur by either apoptosis or necrosis. Apoptosis is characterized by well‐defined nuclear changes which are thought to be the consequence of both proteolysis and DNA fragmentation. On the other hand, the nuclear modifications that occur during necrosis are largely less known. Here, we have investigated whether or not nuclear modifications occur during ethanol‐induced necrotic cell death of HL‐60 cells. By means of immunofluorescence staining, we demonstrate that the patterns given by antibodies directed against some nuclear proteins (lamin B1, NuMA, topoisomerase IIα, SC‐35, B23/nucleophosmin) changed in necrotic cells. The changes in the spatial distribution of NuMA strongly resembled those described to occur during apoptosis. On the contrary, the fluorescent pattern characteristic for other nuclear proteins (C23/nucleolin, UBF, fibrillarin, RNA polymerase I) did not change during necrosis. By immunoblotting analysis, we observed that some nuclear proteins (SAF‐A, SATB1, NuMA) were cleaved during necrosis, and in the case of SATB1, the apoptotic signature fragment of 70 kDa was also present to the same extent in necrotic samples. Caspase inhibitors did not prevent proteolytic cleavage of the aforementioned polypeptides during necrosis, while they were effective if apoptosis was induced. In contrast, lamin B1 and topoisomerase IIα were uncleaved in necrotic cells, whereas they were proteolyzed during apoptosis. Transmission electron microscopy analysis revealed that slight morphological changes were present in the nuclear matrix fraction prepared from necrotic cells. However, these modifications (mainly consisting of a rarefaction of the inner fibrogranular network) were not as striking as those we have previously described in apoptotic HL‐60 cells. Taken together, our results indicate that during necrosis marked biochemical and morphological changes do occur at the nuclear level. These alterations are quite distinct from those known to take place during apoptosis. Our results identify additional biochemical and morphological criteria that could be used to discriminate between the two types of cell death. J. Cell. Biochem. Suppl. 36: 19–31, 2001.


Histology and Histopathology | 2005

Nuclear phosphoinositide specific phospholipase C (PI-PLC)-ß1: a central intermediary in nuclear lipid-dependent signal transduction

A M Martelli; Fiume R; Irene Faenza; Giovanna Tabellini; Evangelista C; Roberta Bortul; Follo My; Federica Falà; Lucio Cocco

Several studies have demonstrated the existence of an autonomous intranuclear phospho-inositide cycle that involves the activation of nuclear PI-PLC and the generation of diacylglycerol (DG) within the nucleus. Although several distinct isozymes of PI-PLC have been detected in the nucleus, the isoform that has been most consistently highlighted as being nuclear is PI-PLC-beta1. Nuclear PI-PLC-beta1 has been linked with either cell proliferation or differentiation. Remarkably, the activation mechanism of nuclear PI-PLC-beta1 has been shown to be different from its plasma membrane counterpart, being dependent on phosphorylation effected by p44/42 mitogen activated protein (MAP) kinase. In this review, we report the most up-dated findings about nuclear PI-PLC-beta1, such as the localization in nuclear speckles, the activity changes during the cell cycle phases, and the possible involvement in the progression of myelodisplastic syndrome to acute myeloid leukemia.

Collaboration


Dive into the Giovanna Tabellini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge