Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giovanni Abatangelo is active.

Publication


Featured researches published by Giovanni Abatangelo.


Wound Repair and Regeneration | 1999

Functions of hyaluronan in wound repair

W. Y. John Chen; Giovanni Abatangelo

Hyaluronan is a major carbohydrate component of the extracellular matrix and can be found in skin, joints, eyes and most other organs and tissues. It has a simple, repeated disaccharide linear copolymer structure that is completely conserved throughout a large span of the evolutionary tree, indicating a fundamental biological importance. Amongst extracellular matrix molecules, it has unique hygroscopic, rheological and viscoelastic properties. Hyaluronan binds to many other extracellular matrix molecules, binds specifically to cell bodies through cell surface receptors, and has a unique mode of synthesis in which the molecule is extruded immediately into the extracellular space upon formation. Through its complex interactions with matrix components and cells, hyaluronan has multifaceted roles in biology utilizing both its physicochemical and biological properties. These biological roles range from a purely structural function in the extracellular matrix to developmental regulation through effects of cellular behavior via control of the tissue macro‐ and microenvironments, as well as through direct receptor mediated effects on gene expression. Hyaluronan is also thought to have important biological roles in skin wound healing, by virtue of its presence in high amounts in skin. Hyaluronan content in skin is further elevated transiently in granulation tissue during the wound healing process. In this review, the general physicochemical and biological properties of hyaluronan, and how these properties may be utilized in the various processes of wound healing: inflammation, granulation and reepithelization, are presented.


Biomaterials | 1998

Semisynthetic resorbable materials from hyaluronan esterification

Davide Campoccia; P. J. Doherty; Marco Radice; Paola Brun; Giovanni Abatangelo; David F. Williams

In recent years, research on new, biocompatible, degradable materials has seen the development of a series of modified natural polymers. Among these, a new class of materials consisting of different hyaluronan derivatives promises to be useful in a whole range of clinical applications thanks to their varied biological properties. These new materials are obtained by chemical modification of purified hyaluronan consisting of the partial or total esterification of the carboxyl groups of this natural polymer. This review on the properties of the new materials reports some of their biocompatibility and characterization aspects based on findings from studies conducted on the ethyl and benzyl hyaluronan esters, two representative members of this new class of compounds, and is intended to arouse interest in the potential of other, as yet unexplored derivatives. From the results of a number of investigations, the various derivatives appear to possess different physico-chemical properties, especially as far as the degree of hydration and polymer stability are concerned. In addition, the type of esterification and extent of chemical esterification of hyaluronan considerably affects the biological properties of these materials, offering a range of polymers either favouring or, conversely, inhibiting the adhesion of certain types of cell.


Journal of Biomedical Materials Research | 2000

Hyaluronan‐based biopolymers as delivery vehicles for bone‐marrow‐derived mesenchymal progenitors

Marco Radice; Paola Brun; Roberta Cortivo; R. Scapinelli; C. Battaliard; Giovanni Abatangelo

The tolerability and safety of hyaluronan-based three-dimensional scaffolds as a culture vehicle for mesenchymal progenitor cells was investigated in this pilot study. The proliferation patterns and extracellular matrix production of rabbit and human mesenchymal, bone-marrow-derived progenitors first were characterized in vitro. Subsequently rabbit autologous cells were cultured in this hyaluronan-based scaffold and implanted in a full-thickness osteochondral lesion. In vitro histologic findings showed that mesenchymal progenitor cells adhered and proliferated onto the hyaluronan-derived scaffold. Human stem cells were shown to produce the main extracellular matrix molecules, accompanied by an occasional synthesis of mature type II collagen. In vivo data demonstrated that the biomaterial, with or without mesenchymal progenitors, did not elicit any inflammatory response and was completely degraded within 4 months after implantation. With regard to the efficacy of this cell therapy, even among the small number of animals tested there was histologic evidence that lesions filled with the biomaterial, either seeded or unseeded with cells, achieved a faster and better healing compared to empty controls. The present data suggest that the hyaluronan-based scaffolds are well tolerated and safe and may be a valuable delivery vehicle for tissue engineering in the repair of articular cartilage defects.


Proceedings of the National Academy of Sciences of the United States of America | 2008

High glucose induces adipogenic differentiation of muscle-derived stem cells.

Paola Aguiari; Sara Leo; Barbara Zavan; Vincenzo Vindigni; Alessandro Rimessi; Katiuscia Bianchi; Chiara Franzin; Roberta Cortivo; Marco Rossato; Roberto Vettor; Giovanni Abatangelo; Tullio Pozzan; Paolo Pinton; Rosario Rizzuto

Regeneration of mesenchymal tissues depends on a resident stem cell population, that in most cases remains elusive in terms of cellular identity and differentiation signals. We here show that primary cell cultures derived from adipose tissue or skeletal muscle differentiate into adipocytes when cultured in high glucose. High glucose induces ROS production and PKCβ activation. These two events appear crucial steps in this differentiation process that can be directly induced by oxidizing agents and inhibited by PKCβ siRNA silencing. The differentiated adipocytes, when implanted in vivo, form viable and vascularized adipose tissue. Overall, the data highlight a previously uncharacterized differentiation route triggered by high glucose that drives not only resident stem cells of the adipose tissue but also uncommitted precursors present in muscle cells to form adipose depots. This process may represent a feed-forward cycle between the regional increase in adiposity and insulin resistance that plays a key role in the pathogenesis of diabetes mellitus.


Biomaterials | 1993

Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats.

L. Benedetti; Roberta Cortivo; T. Berti; A. Berti; F. Pea; M. Mazzo; M. Moras; Giovanni Abatangelo

Hyaluronan (HL), a naturally occurring glycosaminoglycan, has been chemically modified through the esterification of its carboxylic groups with different types of alcohol. The physico-chemical properties of these new biopolymers allow the preparation of many biomaterials which may be used in several medical applications. In the present study both the biocompatibility and biodegradation of some water-insoluble HL esters have been evaluated, either as raw material or as manufactured devices after subcutaneous and intraperitoneal implantation in male rats. The inflammatory response and the degree of resorption for each tested material are reported. The relationships between the degree of esterification and the type of alcohol used with the above parameters are also investigated.


Journal of Biomedical Materials Research | 1999

Chondrocyte aggregation and reorganization into three-dimensional scaffolds

Paola Brun; Giovanni Abatangelo; Marco Radice; Valentina Zacchi; Diego Guidolin; Daniela Daga Gordini; Roberta Cortivo

Articular cartilage has a very limited self-repairing capacity; thus, chondral lesions normally result in chronic degeneration and, eventually, osteoarthritis development. Currently, tissue engineering offers a new tool for the clinical treatment of osteochondral defects. The present investigation aimed to develop an in vitro engineered cartilage using a new class of semisynthetic scaffolds. Two nonwoven meshes of hyaluronan esters (Hyaff(R) derivatives) were seeded with sternal chick embryo chondrocytes cultured for up to 21 days, after which time they were assessed for both the cellular growth profile and histological features. Avian chondrocytes easily adhered and proliferated onto hyaluronan-based scaffolds, demonstrating a significant preference for the fully esterified benzylic form. Histochemical staining revealed the presence of a neosynthesized glycosaminoglycan-rich extracellular matrix, and immunohistochemistry confirmed the deposition of collagen type II. Moreover, ultrastructural observations supported evidence that chondrocytes grown onto a hyaluronan-derived three-dimensional scaffold maintained their unique phenotype and organization in a cartilage-like extracellular matrix. These findings support the further pursuit of a transplantable engineered cartilage using human chondrocytes for the regeneration of chondral lesions.


Journal of Biomedical Materials Research | 1998

In vitro engineering of human skin‐like tissue

Valentina Zacchi; Carlo Soranzo; Roberta Cortivo; Marco Radice; Paola Brun; Giovanni Abatangelo

Coverage of large, full-thickness burns presents a challenge for the surgeon due to the lack of availability of the patients own skin. Currently, tissue engineering offers the possibility of performing a suitable therapeutic wound coverage after early burn excision by using cultured keratinocyte sheets supported by a dermal layer. The aim of this study was to develop and characterize a skin substitute composed of both epidermal and dermal elements. For this purpose we grew keratinocytes and fibroblasts separately for 15 days within two different types of biomaterials. Cells then were co-cultured for an additional period of 15 days, after which samples were taken and processed with either classic or immunohistochemical stainings. Results showed that (1) human fibroblasts and keratinocytes can be cultured on hyaluronic acid-derived biomaterials and that (2) the pattern of expression of particular dermal-epidermal molecules is similar to that found in normal skin. The data from this study suggest that our skin equivalent might be useful in the treatment of both burns and chronic wounds.


Journal of Surgical Research | 1983

Healing of hyaluronic acid enriched wounds: histological observations

Giovanni Abatangelo; M. Martelli; P. Vecchia

The influence of an exogenous supply of Na hyaluronate (HA) on the healing of superficial skin wounds in healthy and alloxan-induced diabetic rats was histologically assessed. Rats were treated by topical application on the wound site of a 2% Na hyaluronate solution. A facilitating effect of the HA-enrichment on wound repair processes (particularly epithelial migration and differentiation) was markedly evident in wounded diabetic rats. This result is discussed in terms of a possible favorable influence of an HA-enriched wound environment on cell migratory processes occurring during wound healing.


Biomaterials | 2003

Tissue-specific gene expression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds

Davide Girotto; Serena Urbani; Paola Brun; Davide Renier; Rolando Barbucci; Giovanni Abatangelo

The re-differentiation capacities of human articular and chick embryo sternal chondrocytes were evaluated by culture on HYAFF-11 and its sulphate derivative, HYAFF-11-S, polymers derived from the benzyl esterification of hyaluronate. Initial results showed that the HYAFF-11-S material promoted the highest rate of chondrocyte proliferation. RNA isolated from human and chick embryo chondrocytes cultured in Petri dishes, HYAFF-11 or HYAFF-11-S were subjected to semi-quantitative RT-PCR analyses. Human collagen types I, II, X, human Sox9 and aggrecan, chick collagen types I, II, IX and X were analysed. Results showed that human collagen type II mRNA expression was upregulated on HYAFF-11 biomaterials. In particular, a high level of collagen type IIB expression was associated with three-dimensional culture conditions, and the HYAFF-11 material was the most supportive for human collagen type X mRNA expression. Human Sox9 mRNA levels were constantly maintained in monolayer cell culture conditions over a period of 21 days, while these were upregulated when chondrocytes were cultured on HYAFF-11 and HYAFF-11S. Furthermore, chick collagen type IIA and IIB mRNA expression was detected after only 7 days of HYAFF-11 culture. Chick collagen type IX mRNA expression decreased in scaffold cultures over time. Histochemical staining performed in engineered cartilage revealed the presence of a de novo synthesized glycosaminoglycan-rich extracellular matrix; immunohistochemistry confirmed the deposition of collagen type II. This study showed that the three-dimensional HYAFF-11 culture system is both an effective chondrocyte delivery system for the treatment of articular cartilage defects, and an excellent in vitro model for studying cartilage differentiation.


Biomaterials | 2000

In vitro reconstructed dermis implanted in human wounds: degradation studies of the HA-based supporting scaffold

Giampaolo Galassi; Paola Brun; Marco Radice; Roberta Cortivo; Giovanni Franco Zanon; Piero Genovese; Giovanni Abatangelo

The objective of the present study was to demonstrate the safety and efficacy of a dermal replacement for cutaneous wounds of diverse origin. Autologous fibroblasts were cultured in fleece scaffolds made from benzyl esters of hyaluronic acid and applied onto cutaneous lesions. The cases presented are (1) skin removal for multiple epithelioma and (2) chronic deep decubitus ulcer. Dermal-like tissue applied by the surgeon elicited no adverse reactions, and was fully integrated and well-vascularized by 1-3 weeks. In Case 1, the material was fully integrated after 1 week, and after 3 weeks an epidermal autograft was overlaid which showed good take with excellent integration observed after 4 weeks. At 12 months, skin demonstrated visual normo-elastic properties and no signs of excessive scarring. In Case 2, 2-3 weeks after the dermal implant was applied, the wound was invaded with granulation tissue and healing occurred by secondary intention. The ulcer was healed by 8 weeks, with the biomaterial completely resorbed and a complete re-epithelialization over the dermal-like tissue. These results suggest that autologous fibroblast culture in hyaluronan-derived scaffolds may be successfully grafted in diverse cutaneous pathologies and constitute a suitable bed for further epidermal implantation.

Collaboration


Dive into the Giovanni Abatangelo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge