Giovanni Bonny
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Giovanni Bonny.
Philosophical Magazine | 2009
Giovanni Bonny; R.C. Pasianot; Nicolas Castin; Lorenzo Malerba
In recent years, the development of atomistic models dealing with microstructure evolution and subsequent mechanical property change in reactor pressure vessel steels has been recognised as an important complement to experiments. In this framework, a literature study has shown the necessity of many-body interatomic potentials for multi-component alloys. In this paper, we develop a ternary many-body Fe–Cu–Ni potential for this purpose. As a first validation, we used it to perform a simulated thermal annealing study of the Fe–Cu and Fe–Cu–Ni alloys. Good qualitative agreement with experiments is found, although fully quantitative comparison proved impossible, due to limitations in the used simulation techniques. These limitations are also briefly discussed.
Modelling and Simulation in Materials Science and Engineering | 2009
Giovanni Bonny; R.C. Pasianot; Lorenzo Malerba
A many-body interatomic potential for the Fe–Ni system is fitted, capable of describing both the ferritic and austenitic phase. The Fe–Ni system exhibits two stable ordered intermetallic phases, namely, L10 FeNi and L12 FeNi3, that are key issues to be tackled when creating a Fe–Ni potential consistent with thermodynamics. A procedure, based on a rigid lattice Ising model and the theory of correlation functions space, is developed to address all the intermetallics that are possible ground states of the system. While controlling the ground states of the system, the mixing enthalpy and defect properties were fitted. Both bcc and fcc defect properties are compared with density functional theory calculations and other potentials found in the literature. Finally, the potential is thermodynamically validated by constructing the alloy phase diagram. It is shown that the experimental phase diagram is reproduced reasonably well and that our potential gives a globally improved description of the Fe–Ni system in the whole concentration range with respect to the potentials found in the literature.
Philosophical Magazine | 2011
Giovanni Bonny; R.C. Pasianot; Dmitry Terentyev; Lorenzo Malerba
We present an Fe–Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe–Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.
Journal of Physics: Condensed Matter | 2011
K. Vörtler; N. Juslin; Giovanni Bonny; Lorenzo Malerba; K. Nordlund
The understanding of the primary radiation damage in Fe-based alloys is of interest for the use of advanced steels in future fusion and fission reactors. In this work Fe-Cr alloys (with 5, 6.25, 10 and 15% Cr content) and Fe-Ni alloys (with 10, 40, 50 and 75% Ni content) were used as model materials for studying the features of steels from a radiation damage perspective. The effect of prolonged irradiation (neglecting diffusion), i.e. the overlapping of single 5 keV displacement cascade events, was studied by molecular dynamics simulation. Up to 200 single cascades were simulated, randomly induced in sequence in one simulation cell, to study the difference between fcc and bcc lattices, as well as initially ordered and random crystals. With increasing numbers of cascades we observed a saturation of Frenkel pairs in the bcc alloys. In fcc Fe-Ni, in contrast, we saw a continuous accumulation of defects: the growth of stacking-fault tetrahedra and a larger number of self-interstitial atom clusters were seen in contrast to bcc alloys. For all simulations the defect clusters and the short range order parameter were analysed in detail depending on the number of cascades in the crystal. We also report the modification of the repulsive part of the Fe-Ni interaction potential, which was needed to study the non-equilibrium processes.
Journal of Physics: Condensed Matter | 2014
Giovanni Bonny; Petr Grigorev; Dmitry Terentyev
In this work we developed an embedded atom method potential for large scale atomistic simulations in the ternary tungsten-hydrogen-helium (W-H-He) system, focusing on applications in the fusion research domain. Following available ab initio data, the potential reproduces key interactions between H, He and point defects in W and utilizes the most recent potential for matrix W. The potential is applied to assess the thermal stability of various H-He complexes of sizes too large for ab initio techniques. The results show that the dissociation of H-He clusters stabilized by vacancies will occur primarily by emission of hydrogen atoms and then by break-up of V-He complexes, indicating that H-He interaction does influence the release of hydrogen.
Journal of Astm International | 2007
Lorenzo Malerba; D. Terentyev; Giovanni Bonny; A. V. Barashev; C. Björkas; N. Juslin; K. Nordlund; C. Domain; Pär Olsson; Nils Sandberg; Janne Wallenius
High-Cr ferritic/martensitic steels are being considered as structural materials for a large number of future nuclear applications, from fusion to accelerator-driven systems and GenIV reactors. Fe-Cr alloys can be used as model materials to investigate some of the mechanisms governing their microstructure evolution under irradiation and its correlation to changes in their macroscopic properties. Focusing on these alloys, we show an example of how the integration of computer simulation and theoretical models can provide keys for the interpretation of a host of relevant experimental observations. In particular we show that proper accounting for two basic features of these alloys, namely, the existence of a fairly strong attractive interaction between self-interstitials and Cr atoms and of a mixing enthalpy that changes sign from negative to positive around 8 to 10 % Cr, is a necessary and, to a certain extent, sufficient condition to rationalize and understand their behavior under irradiation. These features have been revealed by ab initio calculations, are supported by experimental evidence, and have been adequately transferred into advanced empirical interatomic potentials, which have been and are being used for the simulation of damage production, defect behavior, and phase transformation in these alloys. The results of the simulations have been and are being used to parameterize models capable of extending the description of radiation effects to scales beyond the reach of molecular dynamics. The present paper intends to highlight the most important achievements and results of this research activity.
Philosophical Magazine | 2009
Giovanni Bonny; R.C. Pasianot; Lorenzo Malerba
A detailed analysis of the embedded atom method and Finnis–Sinclair formalisms is performed, showing their limitations to fit concentration dependent properties of alloys. Two empirical extensions of the former methods, so-called two-band model and concentration dependent model, are analysed in depth, and their heuristic equivalence is shown. An algorithm is proposed for the two-band model, capable of fitting concentration dependent properties of the alloy, such as mixing enthalpy and bulk modulus. The algorithm is then applied to the Fe-Cr system, deriving two interatomic potentials that closely reproduce Fe-Crs complex mixing enthalpy.
Modelling and Simulation in Materials Science and Engineering | 2010
T.P.C. Klaver; Giovanni Bonny; Pär Olsson; D. Terentyev
Three semi-empirical force field FeCr potentials, two within the formalism of the two-band model and one within the formalism of the concentration dependent model, have been benchmarked against a w ...
Philosophical Magazine | 2009
Giovanni Bonny; R.C. Pasianot; Lorenzo Malerba
In computational materials science, many atomistic methods hinge on an interatomic potential to describe material properties. In alloys, besides a proper description of problem-specific properties, a reasonable reproduction of the experimental phase diagram by the potential is essential. In this framework, two complementary methods were developed to fit interatomic potentials to the thermodynamic properties of an alloy. The first method involves the zero Kelvin phase diagram and makes use of the concept of the configuration polyhedron. The second method involves phase boundaries at finite temperature and is based on the cluster variation method. As an example for both techniques, they are applied to the Fe–Cu, Fe–Ni and Cu–Ni systems. The resulting potentials are compared to those found in the literature and are found to reproduce the experimental phase diagram more consistently than the latter.
Journal of Physics: Condensed Matter | 2012
D. Terentyev; Giovanni Bonny; A. Bakaev; D. Van Neck
In this work we have summarized the available ab initio data addressing the interaction of carbon with vacancy defects in bcc Fe and performed additional calculations to extend the available dataset. Using an ab initio based parameterization, we apply object kinetic Monte Carlo (OKMC) simulations to model the process of isochronal annealing in bcc Fe doped with carbon to compare with experimental data. As a result of this work, we clarify that a binding energy of ~0.65 eV for a vacancy-carbon (V-C) pair fits the available experimental data best. It is found that the V (2)-C complex is less stable than the V-C pair and its dissociation with activation energy of 0.55 + 0.49 eV also rationalizes a number of experimental data where the breakup of V-C complexes was assumed instead. From the summarized ab initio data, the subsequently obtained OKMC results and critical discussion, provided here, we suggest that the twofold interpretation of the V-C binding energy, which is believed to vary between 0.47 and 0.65 eV, depending on the ab initio approximation, should be removed. The stability and mobility of small and presumably immobile SIA clusters formed at stage II is also discussed in the view of experimental data.